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Preface

The mid 17t century saw the introduction of Newton’s law of viscosity and
the publication of his Philosophiae Naturalis Principia Mathematica;. in 1822 Fourier
unveiled his theory, including his law of heat conduction; and in 1855 Fick proposed the
first law of diffusion. Since then, numerous developments in fundamental physics have
come about and a whole gamut of elucidations has become popular with many physicists
and scientists, such as Einstein’s theory of relativity with light having the highest velocity,
the characterization of Brownian dynamics by Chandrashekar and von Kampen, and
Schroedinger’'s wave equation to describe the movement of molecules in a box.
Incorporating this understanding into the universal laws of engineering has, however, yet
to happen.

Transient problems in transport phenomena have a variety of applications
encompassing drug delivery systems for chemotherapy in bioengineering, heat transfer
to surfaces in FBC, fluidized bed combustion boilers in mechanical engineering,
simultaneous reaction and diffusion problems in the Zeigler-Natta gas phase,
polymerization of polypropylene in chemical engineering, and polyacrylamide gel
electrophoresis in bioinformatics. The attention given to transient problems in the
leading textbooks currently in vogue represents only a small proportion of the broader
heat, mass and momentum transfer discipline - often only 7% of the entire text, and not
commensurate with their importance in industry. Often, the problems treated provide a
Fourier series solution of a parabolic partial differential equation (PDE) and imply a
certain weariness of the student.

In general, the Fourier series does not fully describe all the transient
events of significance, for example: the short contact time singularity in heat flux in the
widely used surface renewal theories, and the loss of universality when the heat transfer
through a small film is considered. In one research problem, i.e., in the heat transfer in
fluidized beds to immersed surfaces, for over 50 years, investigators have developed
models for overprediction of the surface renewal theory to experiment at short contact
times. New resistances were introduced, adding empiricism models that were otherwise
derived from first principle models.

They seldom achieve a level of scrutiny higher than the continuum and
empirical linear laws that describe forces with flows. Often, the premise of steady state is
used. With increased computer resources, more fundamental phenomena can be accounted
for and solved. The evaluation of the damped wave equation and the relaxation equation
of heat, mass and momentum to represent transient events is one example of such an
endeavor. The Euler equation and Navier-Stokes equations can be extended to include the
relaxational transport term. At a molecular level, when the heat flux is defined as the
energy leaving the surface minus the energy of the molecules entering the surface, it can
be modified to include an accumulation of energy term. This may manifest only during
transient problems where the accumulation of heat flux or temperature becomes
important. In a similar fashion, the mass flux can be modified to include the accumulation
of mass, and the shear stress or momentum flux can be modified to include the
accumulation of momentum. The happenings in time are as important as those in space,
especially in transient problems.



viii

As discussed by Newton, when the apple falls from the tree, the net
acceleration decreases to zero at the terminal settling velocity of the apple, due to the
changing drag force as a function of velocity. As the velocity increases from zero at rest,
the drag force increases proportional to the velocity, changing the resultant force from the
difference of gravity and the Archimedes buoyancy force to the resultant gravity minus
buoyancy minus drag force. So the rate of acceleration, which can be calculated as the
ratio of the resultant force to the mass of the apple, is a pronounced phenomenon during
transient events in fluid flow, heat transfer and mass transfer, which is not incorporated
in the current theoretical depiction of transient events in the industry.

The myth of a Clausius inequality violation clouded early attempts in the literature
to account for the accumulation effects using the equation that came originally from
Maxwell and during the mid 20t century from Cattaneo and Vernotte in France. The mere
introduction of three terms in the governing equation can lead to the “theoretical
possibility” of temperature gradient and heat flux being of the same sign and thus
effecting a heat flow from low to high temperature. The second law of thermodynamics is
not violated by transient phenomena. Sometimes an improper perspective of the
interpretation of model solutions leads to the impression of an inherent flaw in the wave
equation with a damping term. At steady state, using Fourier’s law and a temperature-
dependent heat source, negative temperatures can arise in the solution which need to be
interpreted as zero temperature and not a violation of the third law of thermodynamics.

Our primary goal is to encourage the depiction of transient phenomena with
a higher level of scrutiny than Fourier’s, Fick’s and Newton's laws and to seek a
connection with molecular phenomena. A case in point is the use of damped wave
transport and relaxation equations of heat, mass and momentum. The solution
methodologies used to obtain meaningful solutions are: relativistic transformation of
coordinates, method of separation of variables, Laplace transforms, and method of complex
temperatures. Bounded solutions without any violation of the second law of
thermodynamics can be seen. Physical insight is sometimes preferred to mathematical
rigor.

The conditions under which subcritical damped oscillations can be found are
derived for a finite slab, a cylinder and a sphere and the results depicted in figures. For
the evaluation of wave equation effects, the damping term is first removed from the
hyperbolic PDE. The solution exhibits symmetry in space and sometimes in time. A zone
of zero transfer can be detected in a Zeigler-Natta catalyst during simultaneous reaction
and diffusion. The storage coefficient is defined to evaluate the relative contributions of
thermal mass and thermal relaxation. New dimensionless groups have been introduced,
such as the momentum number, accumulation number, oscillation number, modified
Peclet number, heat, mass and momentum, modified Biot number, Fourier modulus,
Fick modulus, permeability number, storage number, dimensionless pressure,
temperature, concentration, force, stress, heat flux, mass flux and velocity, penetration
length, penetration time, velocity of heat, velocity of mass and the velocity of momentum.
The thermal lag time associated with realizing a heat disturbance in the interior of a
slab, the exterior of a cylinder and a sphere is calculated and expressions provided.

Bessel equations are used extensively in the text and a summary of the
relations used, including the generalized Bessel equation, is given as Appendix A. The
commonly found inversions of Laplace transforms are available as Appendix B and the
reader is referred to numerical inversions of Laplace transforms for expressions not
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found in Appendix B. Appendix C contains the extended Navier-Stokes equation of
motion with the accumulation term included. Experimental evidence for the relaxation
time in heat transfer has fallen in the range of a few seconds in the case of dispersed
biological materials. This is much higher than the few nanoseconds projected by early
investigators of the phenomenon. Chapter 1 provides an introduction to the damped
wave transport and relaxation equation. Heat, mass and momentum transfer problems

are dealt with separately in Chapters, 2, 3, and 4.
Case studies and applications are discussed in Chapter 5.
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1.0 The Damped Wave Conduction and Relaxation
Equation

Nomenclature

half-width of slab (m)

cross-sectional area of the slab (m®)
heat capacity (J/kg/K)

diameter of molecule (m)

binary diffusivity (m%s)

energy coefficient (J/m*%/K)

energy coefficient (J/m/K)

jth force

phonon electron coupling factor

heat transfer coefficient (W/m*K)
kth flow

thermal conductivity (W/m/K)
phenomenological coefficients
penetration length (m)

mass of molecule (kg)

number of molecules per unit volume
arbitrary distribution

ballistic part

diffusive part

heat flux (W/m®)

time (s)

temperature (K)

characteristic time

<u> mean molecular speed (m/s)
dimensionless temperature for finite medium (T — T)AT, - T,)
dimensionless temperature for semi-infinite medium
(T-TMT,-T)

dimensionless temperature at zero initial temperature
(T/T,)

fluid velocity in the y direction (m/s)
velocity of heat sqrt(a /1)

space (m)

o

&

S

S oHdEEDOR QR

R LN -Bar A

=]

-

[<]

GS

[ %C

Greek

thermal diffusivity (m%s)

characteristic length on the microscale, (m) (3 = E/pC)
Boltzmann constant

viscosity (kg/ms)

density (kg/m®)

dimensionless time (t/t)

relaxation time (s), heat

relaxation time (s), momentum

o F AR

o

Aa. qa q

:



