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Preface

This text is written to present a reasonably complete account of classical mech-
anics at an intermediate undergraduate level. The text affords maximum flexibility
in the selection and arrangement of topics for a two-semester, 3 credit-hour
course at a sophomore or junior level. But with proper selection and omission of
material, it may be used for a one-semester course. The first chapter is a review of
the basic concepts of mechanics, which includes Newton’s laws of motion and
gravitation and their application to a few selected examples. Chapters 2 through
10 may be covered in the first semester, while the remaining six chapters may be
covered in the second semester. For a one-semester course most of the first twelve
chapters (with material deleted equivalent to two chapters) may covered.

Students with adequate preparation in general physics and calculus are ready
to start this course. Mathematical topics are presented as needed, such as
differential equations (Chapter 3), Fourier series (Chapter 4), vector algebra and
matrix transformations (Chapter 5), and tensor analysis (Chapter 13). Most of
Chapter 5 includes a review of vector analysis. Average students need not go
through most of this material, but they may use it as a convenient reference for
other chapters.

Mechanics is the foundation of pure and applied sciences. Its principles
apply to a vast range and variety of physical systems. I have presented this text to
steadily take students who have had introductory mechanics in general physics to
an intermediate level mechanics, which will give them a strong basis for their
future work in applied and pure sciences, especially advanced physics. Attention
has been paid to the following topics of modern interest: (a) nonlinear oscillators
(Chapter 4); (b) central force motion (Chapter 7), which includes the (i) capture
of comets, (ii) satellite orbits and maneuvers, (iii) stability of circular orbits, and
(iv) interplanetary transfer orbits; (c) collisions in CMCS, which are discussed in
detail (Chapter 8); (d) horizontal wind circulation (weather systems) (Chapter
11); and the relations between conservation laws and symmetry princples (Chap-
ter 12).

If one is to fully appreciate mechanics (or physics in general), one must
learn to solve problems. It is not necessary to solve the most difficult problems;
solving even simple problems increases understanding of basic concepts. One
difficulty most students face in mechanics is that, after reading a given chapter,
they find it hard to attempt the problems at the end of the chapter. Even an
average student, if exposed to solved examples, with solutions that explain the
basic principles and mathematical techniques, can find problem solving both
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interesting and rewarding. To overcome this difficulty, I have included about 60
worked out examples, which are presented throughout the text. Furthermore, the
presence of solved examples saves a great deal of class time and allows the class to
progress at a good pace. Each example is followed by an exercise, and the student
should do these before attempting the problems at the end of the chapter. I have
included a generous sampling of problems of varying degrees of difficulty.

At the end of each chapter there is a list of Suggestions for Further Reading.
Most of the references are for the material discussed in the chapter. A few
references are for the prerequisite preparation material, while those references
marked with asterisks are of an advanced nature. Furthermore, this list contains
most of the references used in writing this textbook, and hence it serves as an
acknowledgment of my debt to these authors.
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Introduction
to Newtonian Mechanics

1.1. INTRODUCTION

Mechanics is one of the oldest and most familiar branches of physics. It deals with
bodies at rest and in motion and the conditions of rest and motion when bodies
are under the influence of internal and external forces. The laws of mechanics
apply to a whole range of objects, both microscopic to macroscopic, such as the
motion of electrons in atoms and that of planets in space or even to the galaxies in
distant parts of the universe.

Mechanics does not explain why bodies move; it simply shows how a body
will move in a given situation and how to describe such motion. The study of
mechanics may be divided into two parts: kinematics and dynamics. Kinematics is
concerned with a purely geometrical description of the motion (or trajectories) of
objects, disregarding the forces producing the motion. It deals with concepts and
the interrelation between position, velocity, acceleration, and time. Dynamics is
concerned with the forces that produce changes in motion or changes in other
properties, such as the shape and size of objects. This leads us to the concepts of
force and mass and the laws that govern the motion of objects. A special case is
statics, which deals with bodies at rest under the influence of external forces.

Although mechanics had its beginning in antiquity, a significant impetus was
given to the thought process involved in mechanics during Aristotle’s time.
However, it was nat until the seventeenth century A.p. that the science of
mechanics was truly founded by Galileo, Huygens, and Newton. They showed
that objects move according to certain rules, and these rules were stated in the
form of laws of motion. Classical or Newtonian mechanics essentially is the study
of the consequences of the laws of motion as formulated by Newton in his
Philosophiae Naturalis Principia Mathematica (the Principia) published in 1686.

Although Newton’s laws provide a direct and simple approach to the subject
of classical mechanics, there are a number of other ways of formulating the
principles of classical mechanics. Among these, the two most significant ap-
proaches are the formulations of Lagrange and Hamilton. These two approaches
take energy rather than force as the fundamental concept. In more than half of

1



2 Chap. 1 Introduction to Newtonian Mechanics

this text, we will use the classical approach of Newton, while in the later part of
the text we will introduce Lagrange and Hamilton formulations.

Until the beginning of the present century, Newton’s laws were completely
applicable to all well-known situations. The difficulties arose when these laws
were applied to certain definite situations: (a) to very fast moving objects (objects
moving with speeds approaching the speed of light) and (b) to objects of
microscopic size such as electrons in atoms. These difficulties led to modifications
in the laws of Newtonian mechanics: (a) to the formulation of the special theory of
relativity for objects moving with high speeds, and (b) to the formulation of
quantum mechanics for objects of microscopic size. The failure of classical
mechanics in these situations is the result of inadequacies in classical concepts of
space and time as discussed briefly in Chapter 16, Special Theory of Relativity.

Before we start an in-depth study of mechanics, we devote this chapter to
summarizing briefly a few essential concepts of interest from introductory mech-
anics. We especially emphasize the importance of the role of Newton’s laws of
motion.

1.2. UNITS AND DIMENSIONS

Measurements in physics involve such quantities as velocity, force, energy,
temperature, electric current, magnetic field, and many others. The most surpris-
ing aspect is that all these quantities can be expressed in terms of a few basic
quantities, such as length, mass, and time. These three quantities are called
fundamental or basic quantities (base units); all others that are expressed in terms
of these are called derived quantities.

Three Basic Standards: Length, Mass, and Time

Three different sets of units are in use. The most prevalent is that in which length
is measured in meters, mass in kilograms, and time in seconds, hence the name
MKS system (or metric system).

Standard of Length: The Meter. The meter has been defined as the
distance between the two marks on the ends of a platinum—iridium alloy metal
bar kept in a temperature~controlled vault at the International Bureau of Weights
and Measures in Sévres, near Paris, France. In 1960, by international agreement,
the General Conference on Weights and Measures changed the standard of length
to an atomic constant by the following procedure. A glass tube is filled with
krypton gas in which an electrical discharge is maintained. The standard meter is
defined to be equal to exactly 1,650,763.73 wavelengths of orange-red light
emitted in a vacuum from krypton-86 atoms. To improve the accuracy still
further, a meter was redefined in 1983 as equal to a distance traveled by light in
vacuum in a time interval of 1/299,792,458 of a second.

Standard of Time: The Second. In the past, the spinning motion of the
Earth about its axis, as well as its orbital motion about the Sun, have been used to



Sec. 1.2 Units and Dimensions 3

define a second. Thus, a second is defined to be 1/86,400 of a mean solar day. In
October 1967, the time standard was redefined in terms of an atomic clock, which
makes use of the periodic atomic vibrations of certain atoms. According to the
cesium clock, a second is defined to be exactly equal to the time interval of
9.192,631,770 vibrations of radiation from cesium-133. This method has an
accuracy of 1 part in 10'". It is possible that two cesium clocks running over a
period of 5000 years will differ by only 1 second.

Standard of Mass: The Kilogram. A platinum—iridium cylinder is carefully
stored in a repository at the International Bureau of Weights and Measures. The
mass of the cylinder is defined to be exactly equal to a kilogram. This is the only
base unit still defined by an artifact. The basic aim of scientists has been to define
the three basic standards in such a way that they are accurately and easily
reproducible in any laboratory.

Different Systems of Units

Systeme International. The International System of Units, abbreviated SI
after the French Systeme International, is the modern version of the metric system
established by international agreement. For convenience it uses seven base units:

Length, in meters (m)

Mass, in kilograms (kg)

Time, in seconds (s)

Electric current, in amperes (A)
Temperature, in kelvins (K)

Amount of substance, in moles (mol)
Luminous intensity, in candelas (cd)

N s WN e

The SI also uses two supplementary units:

1. Plane angle, in radians (rad)
2. Solid angle, in steradians (sr)

The CGS or Gaussian System. In this system the unit of length is the
centimeter (=107° m), the unit of mass is the gram (=10""kg), and the unit of
time is the second.

The British System. In this system the unit of length is the foot and the unit
of time is the second. This system does not use mass as a basic unit; instead, force
is used, the unit of which is the pound (Ib). The unit of mass derived from the
pound is called the slug (=32.17 b mass). The unit of temperature in the British
system is the degree Fahrenheit.

Dimensions

Most physical quantities may be expressed in terms of length L, mass M, and time
T, where L, M, and T are called dimensions. A quantity expressed as L‘M°T*
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means that its length dimension is raised to the power a, its mass dimension is
raised to the power b, and 1ts time dimension is raised to the power c. Thus the
dimensions of volume are L° that of acceleration are LT ~2, and that of force are
MLT™?

To add or subtract two quantities in physics, they must have the same
dimensions. Similarly, no matter what system of units is used, all mathematical
relations and equations must be dimensionally correct. That is, the quantities on
both sides of the equatlons must have the same dimensions. For example, in the
equatlon X = vt + 1at’, x has d1mens1ons of L, vt has dimensions of (L/T)T =
L, and Laf® has dimensions of §(L/T? XT*)=L. Thus dimensional analysm may
be used to (1) check the correctness of the form of the equation, that is, every
term in the equation must have the same dimensions, (2) to check an answer
computed from an equation for plausibility in a given situation, and (3) to arrive
at a formula if we know the dependence of a certain quantity on other physical
quantities.

EXAMPLE 1.1: The magnitude of the radial acceleration a, is a function of the
magnitude of the velocity of the object and the radius R of the curve. By the method
of dimensional analysis, find an expression for a,.

We are given

ag = f(v, R) (i)
that is, Gp= v°R* (i)
Substituting the dimensions
LT—2=( ) (L) Lot (iii)
and comparing the two sides,
a+b=1 and —a=-2
wh.ich gives a=2 and b= —1, lead to the following expression for radial accele-
ration:
v
=g (iv)

EXERCISE 1.1: The time period T of a simple pendulum depends only on its
length / and the acceleration due to gravity g. Find the expression for the time period
by the method of dimensional analysis.

1.3. NEWTON’S LAWS AND INERTIAL SYSTEMS
Newton’s laws may be stated in a brief and concise form as below:
Newton’s first law: Every object continues in its state of rest or uniform

motion in a straight line unless a net external force acts on it to change that
state.
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Newton’s second law: The rate of change of momentum of an object is
directly proportional to the force applied and takes place in the direction of
the force.

Newton’s third law: To every action there is always an equal and opposite
reaction; that is, whenever a body exerts a certain force on a second body, the
second body exerts an equal and opposite force on the first.

These statements do look simple; but that is deceptive. Newton’s laws are
the results of a combination of definitions, experimental observations from
nature, and many intuitive concepts. We cannot do justice to these concepts in a
short space here, but we will try to expand our thinking horizon by discussing
these statements further in some detail.

The motion of objects in our immediate surroundings is complicated by ever
present frictional and gravitational forces. Let us consider an isolated object that
is moving with a constant (or uniform) velocity in space. Being an isolated object
implies that it is far away from any surrounding objects so that it does not interact
with them; hence no net force (gravitational or otherwise) acts on it. To describe
the motion of the object, we must draw a coordinate system with respect to which
the object moves with uniform velocity. Such a coordinate system is called an
inertial system. The essence of Newton’s first law is that it is always possible to
find a coordinate system with respect to which an isolated body moves with
uniform velocity, that is, Newton’s first law asserts the existence of inertial systems.

Newton’s second law deals with such matters as what happens when there is
an interaction between objects? How do you represent interaction? And still
further, what is inertia and how do we measure this property of an object? As we
know, inertia is a property of a body that determines its resistance to motion when
that body interacts with another body. The quantitative measure of inertia is
called mass, as we explore now.

Consider two bodies that are completely isolated from the surroundings but
interact with one another. The interaction between these objects may result from
being connected by means of a rubber band or a spring. The interaction results in
acceleration of the bodies. Such accelerations may be measured by stretching the
bodies apart by the same amount and then measuring the resultant accelerations.
All possible measurements show that the accelerations of these two bodies are
always in opposite directions and that the ratio of the accelerations is constant.
That is,

da
Za _ 1.1
a, Kga (1.1)

where K, is the measure of the relative inertia of body B with respect to body
A. Equation (1.1) also implies that

a, 1 1

K = — X = =
B4 ag —(agla,) K,y

(1.2)
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where K, is the measure of the relative inertia of body A with respect to body
B. That is,

1
Kp,=—— (1.3)
BA KAB
Since K, , is a measure of a ratio, we may define
m
Kp,= m—j (1.4)

where m, and mj are called the masses (or the inertial masses) of body A and
body B, respectively. The ratio mz/m, must be independent of units. The two
objects always have a unique mass ratio, m,/m ,, no matter how the interaction is
applied. This definition of mass is an operational definition of mass. By combining
Egs. (1.1) and (1.4), we obtain

fa__"s
aB mA
or m,a,=—mgag (1.6)

Thus the effect of interaction is that the product of mass and acceleration is
constant and denotes the change in motion. This product is called force and it
represents interaction. Thus we may say that the force F, acting on A due to
interaction with B is

Fy=mua, (1.7)
while the force F acting on B due to interaction with A is
Fy=mpgag (1.8)
Thus, in general, using vector notation, we may write
F=ma (1.9)

This equation is the definition of force and holds good only in inertial systems. It
is important to keep in mind that the force F arises because of an interaction or
simply stands for an interaction. No acceleration could ever be produced without
an interaction.

Let us now proceed to obtain the definition of force starting directly with the
statement of Newton’s second law given previously. Suppose an object of mass m
is moving with velocity v so that the linear momentum p is defined as

p=myv (1.10)
According to Newton’s second law, the rate of change of momentum is defined as
force F; that is,
ap
dt

This equation takes a much simpler form if mass m remains constant at all speeds.
If v is very small as compared to the speed of light ¢ (=3 X 10° m/s), the variation
in mass m is negligible. Hence, we may write

F= (1.11)



