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Discrete Mathematical Structures: Theory and Applications is an innovative text that
introduces a new way of teaching the Discrete Structures course. A course in
discrete structures is an integral part of the computer science curriculum. The
class may consist of both math and computer science majors and can be taught
either by the mathematics department or by the computer science department.
Therefore, it is important that a course in discrete structures present a balance of
theoretical concepts as well as their relevant applications.

Approach

The approach that we have taken in this book is a culmination of many years of
experience. Our main objective is to make the learning of discrete mathematics
easier and fun. Typically, in computer science, a course in discrete mathematics is
taken just after programming courses. In many programs, this course becomes a
prerequisite of other higher-level courses. In Discrete Mathematical Structures: Theory
and Applications, we want to give students a solid foundation of theoretical concepts
and their applications.

We have been teaching the discrete structures course for a number of years.
The textbooks that we have come across tend to be either theory oriented or
applications oriented. We do not believe in simply presenting the statement of
a theorem and then showing its proof. Showing proof after proof is the surest
way to discourage many students. On the other hand, showing application after
application without the reinforcement of theoretical results is like following a cook
book.

In Discrete Mathematical Structures: Theory and Applications, we show why theory
is important and how theory connects with applications. Over the years, we have
learned that giving an example before and after presenting a theoretical result
makes learning easier and effective. Before writing a proof, we usually present
examples to show the relevance of the concept. Moreover, we do not just show a
proof, we show how the proof is constructed. The same methodology is followed
when we present an algorithm. Before and/or after presenting an algorithm, we
show how the algorithm works.

This book is written exclusively with students in mind. The language is user-
friendly and conducive to learning. Very often we hear statements from students
such as “How do I solve problems and write proofs?” To bridge this extremely
important gap, we present a set of fully Worked-Out Exercises at the end of each
section. These Worked-Out Exercises teach students how to solve problems as well
as write proofs—they prepare students to do exercises on their own.

The book contains a rich collection of exercises. Furthermore, at the end of
each chapter we include a set of Programming Exercises. Students are encouraged
to solve these exercises in the programming language of their choice, such as
Maple, C++, or Java.

Although this book is intended for a one-semester course, the book contains
more material than could possibly be covered in this time frame. This gives
the instructor flexibility in determining topic coverage. The book contains thir-
teen chapters, and they can be studied out of order depending on individual
preference.
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Organization and Coverage

Chapter 1 covers the basics of set theory, logic, and algorithms. We present the
basic terminology used in set theory and various results used throughout the book.
In the logic section, after presenting the basic material, such as statements and
rules of inference, we show various proof techniques. Finally, in the algorithm
section, we set the syntax used to write algorithms throughout the book.

Chapter 2 is concerned with the properties of integers and principles of in-
duction. Integers are by far the most important source of examples. We cover
basic properties of integers and then show how integers are represented in com-
puter memory. Next, we cover the principles of induction in detail, giving various
examples and then discussing how induction is used to prove the correctness of
programs, especially loops.

In Chapters 3 and 4 we cover relations, posets, and matrices in detail. We
show how graphs and matrices are used to represent relations. Moreover, we use
matrices to determine the transitive closure of relations on a finite set. Warshall’s
algorithm is covered in detail to find the transitive closure. We also show how
relations are used in the design of relational databases.

Chapter 5 covers functions in detail. Other than covering various types of
functions, we show the relationship between functions and strings.

Chapter 6 is concerned with congruences and their various applications. We
focus on how congruences are used in the construction of ISBNs, UPCs, credit
card numbers, the scheduling of round robin tournaments, hashing, and code
words. This chapter can be studied after Chapter 3, and it is not a prerequisite for
the remaining chapters in the book.

Chapter 7 focuses on counting techniques. More specifically, we discuss basic
counting principles—the addition and the multiplication principle, pigeonhole
principles, permutations, combinations, binomial coefficients, and discrete prob-
ability. We also give various algorithms to generate permutations, combinations,
and binomial coefficients.

Chapter 8 is concerned with advanced counting techniques using recurrence
relations. Following this, we focus on solving linear homogenous recurrence rela-
tions and certain linear nonhomogenous recurrence relations. We are especially
interested in linear nonhomogenous recurrence relations as they frequently ap-
pear in the analysis of algorithms that use divide and conquer techniques. We
present enough results so that we can analyze the various algorithms given in
Chapter 9.

Chapter 9 focuses on the algorithms and their complexity. We start with show-
ing why algorithm analysis is importantand then develop theoretical concepts such
as Big-O and theta notations. In the second half of this chapter, we present and
analyze various searching and sorting algorithms, as well as discuss algorithms to
multiply matrices and an effective way to determine the order in which a sequence
of matrices can be multiplied.

Chapter 10 covers graphs in detail. Starting with basic graph theory defini-
tions and terminology, we discuss topics such as subgraphs, walks, paths, circuits,
isomorphism of graphs, planer graphs, and graph coloring. Also covered is a way
to represent graphs in computer memory as well as various graph algorithms.

Chapter 11 focuses on trees, special types of trees, and determining spanning
and minimal spanning trees. We close this chapter with a discussion of the trans-
port network and present an algorithm to determine a maximal flow in a network.

Chapter 12 is concerned with Boolean algebra and its applications in the
design of electric circuits.

Chapter 13 presents an introduction to automata theory and languages.
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The Web site accompanying this book contains the following additional ma-
terial: applications of Boolean algebra in the design of switching circuits, char-
acterization of regular languages by right congruences, nondeterministic finite
automata with lambda transitions, and generating functions.

The chapter dependency diagram in Figure 1 shows the dependency of chap-

ters. A dotted line means that that the chapter is not necessarily a prerequisite for
the subsequent chapter.
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FIGURE 1

As shown in Figure 1, Chapters 1, 2, and 3 should be studied in sequence.
After studying these chapters there are various choices. In Chapter 9, we describe
certain algorithms related to matrices. The basic concept and basic operations
of matrices, such as addition and multiplication, are needed to understand these
algorithms. Therefore, only these parts from Chapter 4 are need for Chapter 9.

In Chapter 9, we present various notations used in algorithm analysis, such as
Big-O and theta. In Chapter 10, other than discussing theoretical concepts related
to graphs, we also discuss the matrix representation of graphs and applications of
graphs in computer science such as shortest path algorithm and topological sort.
Moreover, these algorithms are described in detail. Only the concept of theta
notation from Chapter 9 is needed for the analysis of the shortest path algorithm.
Other than this, Chapter 9 is nota prerequisite for Chapter 10. Similarly, only the
basic properties of matrices are needed to study Chapter 10.
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Syllabus Planning
Some of the ways the chapters can be studied are (Chapter 6 can be studied any time
after Chapter 3. Therefore, we do not list Chapter 6 in the following sequences.):

1. Study all the chapters in sequence.

2. Study the chapters in the sequence: 1, 2, 3,4,5,10,11,7,8,9, 12, 13.

3. Study the chapters in the sequence: 1, 2, 3, 5,4, 10, 11, 7, 8,9, 12, 13.

4. Study the chapters in the sequence: 1, 2, 3,5, 4,10, 11, 12, 13, 6, 7, 8, 9.
Features

Every chapter in this book includes the following features. These features are both
conducive to learning and allow students to learn the material at their own pace.

Learning Objectives offer an outline of the concepts discussed in detail in the
chapter.

Remarks highlight important facts about the concepts introduced in the
chapter.

More than 450 visual diagrams, both extensive and exhaustive, illustrate
difficult concepts.

Numbered Examples illustrate the key concepts.

Worked-Out Exercises is a set of more than 325 fully Worked-Out Exercises at
the end of each chapter. These exercises teach how to solve problems and

write proofs. We strongly recommend that students study these Worked-
Out Exercises very carefully in order to learn problem-solving techniques.

Section Review offers a summary of the concepts covered in the chapter.

Exercises further reinforce learning and ensure that students have, in fact,
learned the material.

Programming Exercises challenge students to write programs with a specified
outcome.

Student Resources

Maple Software. We are pleased to offer a 120-day trial version of Maple software
with every saleable copy of this text. The CD in the back of the book provides
access to a fully functional version of the latest release of Maple.

Student Online Companion Web Site. In the front of this text, you will find

a scratch-off card with a key code that provides full access to a robust Web site,
located at www . course . com/malikdiscrete. Thissite includes the following

features:
B Student Solutions Manual that supplies answers and detailed explanations
to the odd-numbered problems in the text.
® Student Guide to Maple Software that contains chapter-by-chapter sugges-
tions for using Maple to illustrate concepts in the text.
B Review Questions that allow the opportunity to think critically about the

material in each chapter.
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B Practice Tests for each chapter that provide extra practice in an interactive
format.

B Useful Web Links that offer additional information about the ideas dis-
cussed in each chapter.

Teaching Tools

Discrete Mathematical Structures: Theory and Applications includes teaching tools to
support instructors in the classroom. The ancillaries that accompany the textbook
include an Instructor’s Manual, Solutions, Test Banks, and Test Engine, Power-
Point presentations, and Figure Files. All teaching tools available with this book
are provided to the instructor on a single CD-ROM and are also available on the
Web at www . course . com.

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies
this textbook includes:

B Additional instructional material to assist in class preparation, including
suggestions for lecture topics

B Solutions to all the exercises, including the Programming Exercises

ExamView® This objective-based test generator lets the instructor create
paper, LAN, or Web-based tests from testbanks specifically designed for this Course
Technology text. Instructors can use the QuickTest Wizard to create tests in fewer
than five minutes by taking advantage of Course Technology’s question banks—or
create customized exams.

Solutions. The solution files for all programming exercises in C++ are avail-
able at www . course . com, and are also available on the Teaching Tools CD-ROM.

PowerPoint Presentations. Microsoft PowerPoint slides are included for each
chapter. Instructors might use the slides in a variety of ways, including as teaching
aids during classroom presentations or as printed handouts for classroom distri-
bution. Instructors can add their own slides for additional topics introduced to
the class.

Figure Files. Figure files allow instructors to create their own presentations
using figures taken directly from the text.
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Foundations: Sets, Logic,
and Algorithms

The objectives of this chapter are to:

Learn about sets

Explore various operations on sets

Become familiar with Venn diagrams

Learn how to represent sets in computer memory
Learn about statements (propositions)

Learn how to use logical connectives to combine statements

Explore how to draw conclusion using various argument
forms

Become familiar with quantifiers and predicates
Learn various proof techniques

m Explore what an algorithm is

This chapter sets the stage for all that follows and also serves as
an appropriate place for codifying certain technical terminologies
used throughout the text. In the first section, we discuss sets
and their basic properties. We then study mathematical logic in
some detail. In this book, the focus is not just on theory but
also on applications. When theoretical concepts are presented,
we give various examples to clarify the concepts as well as to
prove theoretical results, wherever appropriate. Therefore, after
discussing sets, we study mathematical logic and describe various

proof techniques.

Over the years a revolution in computer technology has changed
the ways in which we live and communicate. Computer programs

have made tedious computations easy to handle and have
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1.1 SETS

enabled us to achieve results quickly and to a great degree of
precision. Therefore, throughout the book we discuss various
algorithms that can be implemented in a variety of programming
languages, such as C++ and Java. In the last section of this
chapter, we introduce algorithms and describe the syntax of the
pseudocode used to describe algorithms in this book.

Natural numbers, integers, rational numbers, and real numbers
are a great source of examples. We assume that the reader is
familiar with these number systems.

The mathematical theory of sets grew out of the German mathematician Georg
Cantor’s study of trigonometric series and series of real numbers. The language of
sets has since become an important tool for all branches of mathematics, serving
as a basis for the precise description of higher concepts and for mathematical
reasoning.

Let us begin with the question, what is a set? It is fascinating that the answer
to this very basic and apparently simple question once jeopardized the very foun-
dation of set theory. In this text, however, we adopt a naive and intuitive point of
view and introduce the definition of a set according to his definition. According
to his definition, a set is a well-defined collection of distinct objects of our perception or
of our thoughts, to be conceived as a whole.

| Georg Cantor

| (1845-1918)

] Although considered
| one of the great Ger-
man mathematicians,
Cantor was born in St. Petersburg,
Russia, in the winter of 1845 to a
wealthy Danish merchant. At the age
of 11, he moved with his family to Ger-
many where he continued his educa-
tion, earning a doctorate degree from
the University of Berlin in 1867. In 1869
Cantor accepted a post at the University

of Halle, an undistinguished school for
women. His provocative ideas regard-
ing concepts of infinity had put him in
bad standing with his contemporaries,
and many of them opposed his appoint-

ment to the prestigious University of

Berlin. Cantor suffered fits of depres-
sion due in large part to stress related to
his work. He spent the better part of his
later years in and out of mental hospi-
tals and ultimately died in a sanatorium.

Cantor is considered to be the
founder of set theory, and he estab-

lished its relation to transfinite num-
bers. He explored paradoxes that
had existed in mathematics for cen-
turies and even stumbled upon one
of his own, now known as Cantor’s
paradox. Although his theories were
vehemently disputed by his peers, in-
cluding Leopold Kronecker, his men-
tor at the University of Berlin, mod-
ern mathematicians completely accept
Cantor’s work.
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To develop a perfectly balanced working idea of sets, it is sufficient for a
beginner to concentrate on the first part (the italicized part) of this definition.
Note that here well-defined is an adjective to the noun collection and not to the
distinct objects that are to be collected to form a set. What this means is that
there should be no ambiguity whatsoever regarding the membership of such a
collection; well-defined means that we can tell for certain whether an object is a
member of the collection or not. These objects are called members or elements of
the set.

For example, we can talk about the set of all positive integers, even though
no one really knows all of them. But a collection of some positive integers is not a
set because it is not clear whether a particular positive integer, say 5, is a member
of this collection or not. For another example, the collection of students taking
the discrete mathematics course in your school is a set. On the other hand, the
collection of best cars in a city cannot be a set because there is no well-defined
notion of best.

We use italic uppercase letters, A, B, C,..., X, Y, Z, to denote sets. A set can
be described in various ways, but the main point of any description is to specify
the elements of the set in some unambiguous way. One common way, called the
roster method, to describe a set is to list the elements of the set and enclose them
within curly braces. For example, if A is a set of vowels, then we write

A ={a,e,i,o,u}.

For another example, we can describe the set B of all positive integers less than
11 as

B=1{1,2,3,4,5,6,7,8,9;10}.

Let X be a set. If x is an element of X, then we write x € X and say that x
belongs to X. The symbol € stands for belongs to, which, like many other notations,
was introduced in 1889 by the Italian mathematician Giuseppe Peano (1858-1932)
and is believed to be a stylized form of the Greek epsilon. If x is not an element of
X, then we write x ¢ X and say that x is not an element of X. The symbol ¢ stands
for does not belong to.

Let A be the set
A=1{1,2,3,4,5}.
Then 2 € Aand 5 € A. Also, 6 ¢ A.

Let B be the set of first 10 positive odd integers. Then
B=1{1,8,5,7,9,11,18,15,17,19}.
It follows that 9 € Band 2 ¢ B.

We also describe sets in the following manner. Let S be a set. The notation
A={x|xeS,P(x)}
or

A={xe S|P(x)}
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means that A is the set of all elements x of S such that x satisfies the property P.
This way of describing a set is called the set-builder method.
For example, if Z denotes the set of integers, then

N={x|xeZ, x> 0}
or

N={xeZ]|x > 0}.
Here the property P(x) is

Pix) { x>10.

In set-builder notation, the set B of Example 1.1.2 can be described as

B={xeZ|xisoddand 1 < x < 19}.

Let A = {2, —2}. Because 2 and —2 are the only integers that satisfy the equation
x* — 4 = 0, we can also write A as

A={x|x€Z, x> —4=0)}
or

A={xeZ|x*—4=0).
Here the property P(x) is

P(x): x> —4=0.

Let A be the set described in set-builder form as:
A = {x| x is a complex number and =1}
Now the equation x*=1,1e., x* —1 =0, can be factored as
(x + D(x— D(x—d)(x+1i) =0,

where 2 = —1 or i = v/—1. This implies that the solutions of the equation pF=1,
where x is a complex number, are x = 1,—1,i,—i. Therefore, using the roster
form, the set A can be written as

A={1,-1,i,—i}.

Throughout the book, we will use numbers to provide examples. Therefore,
we would like to standardize the symbols to denote various sets of numbers as
follows.

N : The set of all natural numbers (i.e., all positive integers)
7Z : The set of all integers

7* : The set of all nonzero integers

E : The set of all even integers

Q : The set of all rational numbers
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Q" : The set of all nonzero rational numbers
Q™ : The set of all positive rational numbers

R : The set of all real numbers

R* : The set of all nonzero real numbers

R™ : The set of all positive real numbers

C : The set of all complex numbers

C* : The set of all nonzero complex numbers

We know that every integer is a real number; that is, every element of Z is an
element of R. Similarly, every vowel is a letter in the set of English letters. In other
words, if A = {a, ¢, i, 0, u} and B is the set of all English letters, then every element
of A is an element of B. When every element of a set, say A, is also an element of
a set, say B, we say that A is a subset of B. More formally, we have the following
definition.

Let X and Y be sets. Then X is said to be a subset of Y, written X C VY, if every
element of X is an element of Y. If X is not a subset of Y, then we write X g Y,

(i) LetX=1{0,2,4,6,8},Y =10,1,2,3,4,5,6,7,8,9,10},and Z ={1, 2, 8, 4, 5}.
Then X C Y because every element of X is an element of Y. However,
because 0 € X and 0 ¢ Z, we have X ¢ Z.

Notice that we used the fact that 0 € X and 0 ¢ Z to conclude that
X ¢ Z.We could have also used the fact that6 € Xand 6 ¢ Zor8 € X and
8 ¢ Z to conclude that X ,@ 7. In other words, the elements 6 and 8 also
prevent X from being a subset of Z.

(i) LetA = {a, b, c}and B = {a, ¢, b}. Now every element of A is also an element
of B and so A € B. Also notice that B C A.

(ili) Let A = {Basic, Fortran, C++} and B = {Basic, Fortran, Pascal, C++, Java}.
Then A C B.

Note: For everyset X, we have X C X.

Let X and Y be sets. If X € Y, we also say that X is contained in Y, or ¥
contains X, or Y is a superset of X (written Y 2 X).

Notice that in Example 1.1.7(i), every element of X is an element of Y. How-
ever, there are some elementsin Y thatare notin X. Suchaset X is called a proper
subset of Y.

Let X and Y be sets. Then X is a proper subset of Y, written X C Y, if X is a
subset of Y and there exists at least one element in Y that is not in X.

Let A = {a, b} and B = {a, b, ¢}. Because every element of A is an element of B, we
have A € B. Now ¢ € Band ¢ ¢ A. Therefore, there exists an element in B that is
notin A. It now follows that A is a proper subset of B, i.e., A C B.

The set of all even integers is a proper subset of the set of all integers. In set
notation, {2n|n € Z} C Z.

Notethat NCZCcQcC R cC.



