THOMSON

COURSE TECHNOLOGY

DISCRETE
MATHEMATICAL
STRUCTURES:

Theory and Applications

D.S. MALIK AND M.K. SEN




Discrete Mathematical Structures:
Theory and Applications

D.S. Malik
M.K. Sen

THOMSON




THOMSON

™~

COURSE TECHNOLOGY

Discrete Mathematical Structures: Theory and Applications
by D.S. Malik and M.K. Sen

Product Manager: Associate Product Manager:

Alyssa Pratt Mirella Misiaszek

Managing Editor: Editorial Assistant:

Jennifer Muroff Amanda Piantedosi

Senior Acquisitions Editor: Senior Manufacturing Coordinator:
Amy Yarnevich Trevor Kallop

Development Editor: Cover Designer:

Laurie Brown Betsy Young

Senior Production Editor: Compositor:

Aimee Poirier Techsetters, Inc.

COPYRIGHT © 2004 Course Technology, For permission to use material from this text
a division of Thomson Learning, Inc. or product, submit a request online at

Thomson Learning™

herein under license.

is a trademark used www.thomsonrights.com.

Any additional questions about permissions
Printed in the United States of America can be submitted by e-mail to

thomsonrights@thomson.com.
123456789 QWT 080706 0504

Disclaimer
For more information, contact Course Course Technology reserves the right to
Technology, 25 Thomson Place, Boston, revise this publication and make changes
Massachusetts, 02210. from time to time in its content without
notice.

Or find us on the World Wide Web at:

WWw.course.com ISBN 0-619-21285-3 with software

. ISBN 0-619-21558-5 without software
ALL RIGHTS RESERVED. No part of this

work covered by the copyright hereon may
be reproduced or used in any form or by any
means—graphic, electronic, or mechanical,
including photocopying, recording, taping,
Web distribution, or information storage
and retrieval systems—without the written
permission of the publisher.



Discrete Mathematical Structures: Theory and Applications is an innovative text that
introduces a new way of teaching the Discrete Structures course. A course in
discrete structures is an integral part of the computer science curriculum. The
class may consist of both math and computer science majors and can be taught
either by the mathematics department or by the computer science department.
Therefore, it is important that a course in discrete structures present a balance of
theoretical concepts as well as their relevant applications.

Approach

The approach that we have taken in this book is a culmination of many years of
experience. Our main objective is to make the learning of discrete mathematics
easier and fun. Typically, in computer science, a course in discrete mathematics is
taken just after programming courses. In many programs, this course becomes a
prerequisite of other higher-level courses. In Discrete Mathematical Structures: Theory
and Applications, we want to give students a solid foundation of theoretical concepts
and their applications.

We have been teaching the discrete structures course for a number of years.
The textbooks that we have come across tend to be either theory oriented or
applications oriented. We do not believe in simply presenting the statement of
a theorem and then showing its proof. Showing proof after proof is the surest
way to discourage many students. On the other hand, showing application after
application without the reinforcement of theoretical results is like following a cook
book.

In Discrete Mathematical Structures: Theory and Applications, we show why theory
is important and how theory connects with applications. Over the years, we have
learned that giving an example before and after presenting a theoretical result
makes learning easier and effective. Before writing a proof, we usually present
examples to show the relevance of the concept. Moreover, we do not just show a
proof, we show how the proof is constructed. The same methodology is followed
when we present an algorithm. Before and/or after presenting an algorithm, we
show how the algorithm works.

This book is written exclusively with students in mind. The language is user-
friendly and conducive to learning. Very often we hear statements from students
such as “How do I solve problems and write proofs?” To bridge this extremely
important gap, we present a set of fully Worked-Out Exercises at the end of each
section. These Worked-Out Exercises teach students how to solve problems as well
as write proofs—they prepare students to do exercises on their own.

The book contains a rich collection of exercises. Furthermore, at the end of
each chapter we include a set of Programming Exercises. Students are encouraged
to solve these exercises in the programming language of their choice, such as
Maple, C++, or Java.

Although this book is intended for a one-semester course, the book contains
more material than could possibly be covered in this time frame. This gives
the instructor flexibility in determining topic coverage. The book contains thir-
teen chapters, and they can be studied out of order depending on individual
preference.



Preface

Organization and Coverage

Chapter 1 covers the basics of set theory, logic, and algorithms. We present the
basic terminology used in set theory and various results used throughout the book.
In the logic section, after presenting the basic material, such as statements and
rules of inference, we show various proof techniques. Finally, in the algorithm
section, we set the syntax used to write algorithms throughout the book.

Chapter 2 is concerned with the properties of integers and principles of in-
duction. Integers are by far the most important source of examples. We cover
basic properties of integers and then show how integers are represented in com-
puter memory. Next, we cover the principles of induction in detail, giving various
examples and then discussing how induction is used to prove the correctness of
programs, especially loops.

In Chapters 3 and 4 we cover relations, posets, and matrices in detail. We
show how graphs and matrices are used to represent relations. Moreover, we use
matrices to determine the transitive closure of relations on a finite set. Warshall’s
algorithm is covered in detail to find the transitive closure. We also show how
relations are used in the design of relational databases.

Chapter 5 covers functions in detail. Other than covering various types of
functions, we show the relationship between functions and strings.

Chapter 6 is concerned with congruences and their various applications. We
focus on how congruences are used in the construction of ISBNs, UPCs, credit
card numbers, the scheduling of round robin tournaments, hashing, and code
words. This chapter can be studied after Chapter 3, and it is not a prerequisite for
the remaining chapters in the book.

Chapter 7 focuses on counting techniques. More specifically, we discuss basic
counting principles—the addition and the multiplication principle, pigeonhole
principles, permutations, combinations, binomial coefficients, and discrete prob-
ability. We also give various algorithms to generate permutations, combinations,
and binomial coefficients.

Chapter 8 is concerned with advanced counting techniques using recurrence
relations. Following this, we focus on solving linear homogenous recurrence rela-
tions and certain linear nonhomogenous recurrence relations. We are especially
interested in linear nonhomogenous recurrence relations as they frequently ap-
pear in the analysis of algorithms that use divide and conquer techniques. We
present enough results so that we can analyze the various algorithms given in
Chapter 9.

Chapter 9 focuses on the algorithms and their complexity. We start with show-
ing why algorithm analysis is importantand then develop theoretical concepts such
as Big-O and theta notations. In the second half of this chapter, we present and
analyze various searching and sorting algorithms, as well as discuss algorithms to
multiply matrices and an effective way to determine the order in which a sequence
of matrices can be multiplied.

Chapter 10 covers graphs in detail. Starting with basic graph theory defini-
tions and terminology, we discuss topics such as subgraphs, walks, paths, circuits,
isomorphism of graphs, planer graphs, and graph coloring. Also covered is a way
to represent graphs in computer memory as well as various graph algorithms.

Chapter 11 focuses on trees, special types of trees, and determining spanning
and minimal spanning trees. We close this chapter with a discussion of the trans-
port network and present an algorithm to determine a maximal flow in a network.

Chapter 12 is concerned with Boolean algebra and its applications in the
design of electric circuits.

Chapter 13 presents an introduction to automata theory and languages.



Preface X i

The Web site accompanying this book contains the following additional ma-
terial: applications of Boolean algebra in the design of switching circuits, char-
acterization of regular languages by right congruences, nondeterministic finite
automata with lambda transitions, and generating functions.

The chapter dependency diagram in Figure 1 shows the dependency of chap-

ters. A dotted line means that that the chapter is not necessarily a prerequisite for
the subsequent chapter.

Chapter 1

Chapter 2

Chapter 3

b , }
Chapter 4 r(?]1;1;)lk-l‘ ) Chapter GJ
T

Chapter 9

——

|
v Y y

Chapter ﬂ Chapter 12 Chapter 13

Chapter 11

FIGURE 1

As shown in Figure 1, Chapters 1, 2, and 3 should be studied in sequence.
After studying these chapters there are various choices. In Chapter 9, we describe
certain algorithms related to matrices. The basic concept and basic operations
of matrices, such as addition and multiplication, are needed to understand these
algorithms. Therefore, only these parts from Chapter 4 are need for Chapter 9.

In Chapter 9, we present various notations used in algorithm analysis, such as
Big-O and theta. In Chapter 10, other than discussing theoretical concepts related
to graphs, we also discuss the matrix representation of graphs and applications of
graphs in computer science such as shortest path algorithm and topological sort.
Moreover, these algorithms are described in detail. Only the concept of theta
notation from Chapter 9 is needed for the analysis of the shortest path algorithm.
Other than this, Chapter 9 is nota prerequisite for Chapter 10. Similarly, only the
basic properties of matrices are needed to study Chapter 10.



xii

Preface

Syllabus Planning
Some of the ways the chapters can be studied are (Chapter 6 can be studied any time
after Chapter 3. Therefore, we do not list Chapter 6 in the following sequences.):

1. Study all the chapters in sequence.

2. Study the chapters in the sequence: 1, 2, 3,4,5,10,11,7,8,9, 12, 13.

3. Study the chapters in the sequence: 1, 2, 3, 5,4, 10, 11, 7, 8,9, 12, 13.

4. Study the chapters in the sequence: 1, 2, 3,5, 4,10, 11, 12, 13, 6, 7, 8, 9.
Features

Every chapter in this book includes the following features. These features are both
conducive to learning and allow students to learn the material at their own pace.

Learning Objectives offer an outline of the concepts discussed in detail in the
chapter.

Remarks highlight important facts about the concepts introduced in the
chapter.

More than 450 visual diagrams, both extensive and exhaustive, illustrate
difficult concepts.

Numbered Examples illustrate the key concepts.

Worked-Out Exercises is a set of more than 325 fully Worked-Out Exercises at
the end of each chapter. These exercises teach how to solve problems and

write proofs. We strongly recommend that students study these Worked-
Out Exercises very carefully in order to learn problem-solving techniques.

Section Review offers a summary of the concepts covered in the chapter.

Exercises further reinforce learning and ensure that students have, in fact,
learned the material.

Programming Exercises challenge students to write programs with a specified
outcome.

Student Resources

Maple Software. We are pleased to offer a 120-day trial version of Maple software
with every saleable copy of this text. The CD in the back of the book provides
access to a fully functional version of the latest release of Maple.

Student Online Companion Web Site. In the front of this text, you will find

a scratch-off card with a key code that provides full access to a robust Web site,
located at www . course . com/malikdiscrete. Thissite includes the following

features:
B Student Solutions Manual that supplies answers and detailed explanations
to the odd-numbered problems in the text.
® Student Guide to Maple Software that contains chapter-by-chapter sugges-
tions for using Maple to illustrate concepts in the text.
B Review Questions that allow the opportunity to think critically about the

material in each chapter.



Preface xiii

B Practice Tests for each chapter that provide extra practice in an interactive
format.

B Useful Web Links that offer additional information about the ideas dis-
cussed in each chapter.

Teaching Tools

Discrete Mathematical Structures: Theory and Applications includes teaching tools to
support instructors in the classroom. The ancillaries that accompany the textbook
include an Instructor’s Manual, Solutions, Test Banks, and Test Engine, Power-
Point presentations, and Figure Files. All teaching tools available with this book
are provided to the instructor on a single CD-ROM and are also available on the
Web at www . course . com.

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies
this textbook includes:

B Additional instructional material to assist in class preparation, including
suggestions for lecture topics

B Solutions to all the exercises, including the Programming Exercises

ExamView® This objective-based test generator lets the instructor create
paper, LAN, or Web-based tests from testbanks specifically designed for this Course
Technology text. Instructors can use the QuickTest Wizard to create tests in fewer
than five minutes by taking advantage of Course Technology’s question banks—or
create customized exams.

Solutions. The solution files for all programming exercises in C++ are avail-
able at www . course . com, and are also available on the Teaching Tools CD-ROM.

PowerPoint Presentations. Microsoft PowerPoint slides are included for each
chapter. Instructors might use the slides in a variety of ways, including as teaching
aids during classroom presentations or as printed handouts for classroom distri-
bution. Instructors can add their own slides for additional topics introduced to
the class.

Figure Files. Figure files allow instructors to create their own presentations
using figures taken directly from the text.

Acknowledgements

There are many people that we must thank who, in one way or another, contributed
to the success of this book. First, we would like to thank Dr. S.C. Cheng for his
support and making suggestions to improve the text. We must also thank students
who, during the preparation, were spontaneous in telling us if certain portions
needed to be reworded for better understanding and clearer reading. We must
thank Lee I. Fenicle, Director, Office of Technology Transfer, Creighton Uni-
versity, Dr. Randall L. Crist, and Dr. Ratish Basu Roy for their involvement,
support, and for providing encouraging words when we needed them. We would
like to acknowledge the feedback provided by Sunil Kumar Maity and Madhumita
Mukherjee.

We owe a great deal to the following reviewers who patiently read each page of
every chapter of the current version and made critical comments to improve on the
book: Jim Ball, Indiana State University; Jose Cordova, University of Louisiana at
Monroe; Joseph Klerlein, Western Carolina University; and Catherine Yan, Texas



Xiv

Preface

A&M University. The reviewers will recognize that their criticisms have not been
overlooked and, in fact, made this a better book. Thanks to Development Editor
Laurie Brown for carefully editing and promptly returning each chapter. All this
would not have been possible without the planning of Managing Editor Jennifer
Muroff and Product Manager Alyssa Pratt. Our sincere thanks to Jennifer Muroff
and Alyssa Pratt, as well as to Aimee Poirier, Senior Production Editor, and also
to the QA department of Course Technology for carefully testing the code. We
would especially like to thank Burt LaFountain, QA Tester, for carefully reading
the manuscript, solutions to all the exercises, and programming exercises. We
would also like to thank Kate Deibel, University of Washington, for providing
answers to the programming exercises in Chapters 1-8 and 11, and Jim Bishop,
Bryant College, for his help with the biographies.

We are thankful to our parents for their blessings.

Finally, we are thankful for the support of our wives Sadhana and Monisha
and our children Shelly, Nilanjan, Debanjan, and Shubhashree. They cheered
us whenever we were overwhelmed during the writing of this book. We welcome
any comments concerning the text. In spite of our diligent efforts there may still
be room for improvement. Comments may be forwarded to the following e-mail
address: malik@creighton.edu or senmk@cal3.vsnl.net.in.

D.S. Malik
M.K. Sen



CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Preface

Foundations: Sets, Logic, and Algorithms

Sets

HISTORICAL NOTES: GEORG CANTOR

HISTORICAL NOTES: JOHN VENN

Mathematical Logic

Validity of Arguments

Quantifiers and First-Order Logic

Proof Techniques

Algorithms

HISTORICAL NOTES: MUHAMMEND IBN MUSA AL-KHOWARIZMI

Programming Exercises

Integers and Mathematical Induction
HISTORICAL NOTES: PYTHAGORAS
HiSTORICAL NOTES: ANDREW WILES
Integers

Representation of Integers in Computer
Mathematical Induction

Prime Numbers

THE SEARCH FOR PRIME

HisTORICAL NOTES: EUCLID

HISTORICAL NOTES: PIERRE DE FERMAT
Linear Diophantine Equations
HISTORICAL NOTES: DIOPHANTUS

Programming Exercises

Relations and Posets
Relations

Partially Ordered Sets

HisTORICAL NOTES: HELMUT HASSE
Application: Relational Database
HiSTORICAL NOTES: EDGAR CODD

Programming Exercises

Matrices and Closures of Relations
Matrices
HisTORICAL NOTES: ARTHUR CAYLEY

RN AN

89

90

91

92
111
133
149
150
152
158
163
163
170

173
174
207
212
227
228
234

235
236
236



vi

Contents

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

HISTORICAL NOTES: JAMES JOSEPH SYLVESTER
The Matrix of a Relation and Closures
HISTORICAL NOTES: STEPHEN WARSHALL
Programming Exercises

Functions

Functions

HISTORICAL NOTES: JOHANN PETER GUSTAVE LEJEUNE DIRICHLET

HisTORICAL NOTES: GOTTFRIED WILHELM LEIBNITZ
Special Functions and Cardinality of a Set
Sequences and Strings

Binary Operations

Programming Exercises

Congruences

Congruences

HiSTORICAL NOTES: CARL FRIEDRICH GAUSS
Check Digits

HISTORICAL NOTES: GEORGE LLAURER
Linear Congruences

Special Congruence Theorems
HisTORICAL NOTES: RSA KEY ENCRYPTION

Programming Exercises

Counting Principles

Basic Counting Principles

Pigeonhole Principle

Permutations

Combinations

Generalized Permutations and Combinations
Binomial Coefficients

HISTORICAL NOTES: BLAISE PASCAL
Generating Permutations and Combinations
Discrete Probability

HiSTORICAL NOTES: PIERRE SIMON DE LAPLACE

Programming Exercises

Recurrence Relations

Sequences and Recurrence Relations

Linear Homogeneous Recurrence Relations
Linear Nonhomogeneous Recurrence Relations

Programming Exercises

Algorithms and Time Complexity
Algorithm Analysis

237
257
266
276

277
278
278
279
298
315
331
340

341
342
342
358
367
378
401
407
413

415
416
431
438
442
448
455
460
469
477
477
488

489
490
512
527
545

547
548



CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

Contents

Various Algorithms

Programming Exercises

Graph Theory

HisTORICAL NOTES: LEONHARD EULER
Graph Definition and Notations

Walks, Paths, and Cycles

Matrix Representation of a Graph

Special Circuits

HISTORICAL NOTES: SIR WILLIAM ROWAN HAMILTON
Isomorphism

Graph Algorithms

HisTORICAL NOTES: EDSGER WYBE DIJKSTRA
Planar Graphs and Graph Coloring
HisTORICAL NOTES: KAZIMIERZ KURATOWSKI

Programming Exercises

Trees and Networks
Trees

Rooted Tree

Spanning Trees
Networks

Programming Exercises
£

Boolean Algebra and Combinatorial Circuits
Two-Element Boolean Algebra

HISTORICAL NOTES: GEORGE BOOLE

HisTORICAL NOTES: CLAUDE ELWOOD SHANNON
Boolean Algebra

Logical Gates and Combinatorial Circuits
HisTORICAL NOTES: MAURICE KARNAUGH

Programming Exercises
2

Finite Automata and Languages

Finite Automata and Regular Languages
Finite State Machines with Input and Output
Grammars and Languages

Programming Exercises

Appendix

Answers

References

Index

564
600

601
602
603
619
636
644
653
661
669
671
684
691
702

703
704
712
731
743
766

769
770
770
771
785
794
811
823

825
826
851
860
874

875

879

893
897



Foundations: Sets, Logic,
and Algorithms

The objectives of this chapter are to:

Learn about sets

Explore various operations on sets

Become familiar with Venn diagrams

Learn how to represent sets in computer memory
Learn about statements (propositions)

Learn how to use logical connectives to combine statements

Explore how to draw conclusion using various argument
forms

Become familiar with quantifiers and predicates
Learn various proof techniques

m Explore what an algorithm is

This chapter sets the stage for all that follows and also serves as
an appropriate place for codifying certain technical terminologies
used throughout the text. In the first section, we discuss sets
and their basic properties. We then study mathematical logic in
some detail. In this book, the focus is not just on theory but
also on applications. When theoretical concepts are presented,
we give various examples to clarify the concepts as well as to
prove theoretical results, wherever appropriate. Therefore, after
discussing sets, we study mathematical logic and describe various

proof techniques.

Over the years a revolution in computer technology has changed
the ways in which we live and communicate. Computer programs

have made tedious computations easy to handle and have



2 Chapter 1

1.1 SETS

enabled us to achieve results quickly and to a great degree of
precision. Therefore, throughout the book we discuss various
algorithms that can be implemented in a variety of programming
languages, such as C++ and Java. In the last section of this
chapter, we introduce algorithms and describe the syntax of the
pseudocode used to describe algorithms in this book.

Natural numbers, integers, rational numbers, and real numbers
are a great source of examples. We assume that the reader is
familiar with these number systems.

The mathematical theory of sets grew out of the German mathematician Georg
Cantor’s study of trigonometric series and series of real numbers. The language of
sets has since become an important tool for all branches of mathematics, serving
as a basis for the precise description of higher concepts and for mathematical
reasoning.

Let us begin with the question, what is a set? It is fascinating that the answer
to this very basic and apparently simple question once jeopardized the very foun-
dation of set theory. In this text, however, we adopt a naive and intuitive point of
view and introduce the definition of a set according to his definition. According
to his definition, a set is a well-defined collection of distinct objects of our perception or
of our thoughts, to be conceived as a whole.

| Georg Cantor

| (1845-1918)

] Although considered
| one of the great Ger-
man mathematicians,
Cantor was born in St. Petersburg,
Russia, in the winter of 1845 to a
wealthy Danish merchant. At the age
of 11, he moved with his family to Ger-
many where he continued his educa-
tion, earning a doctorate degree from
the University of Berlin in 1867. In 1869
Cantor accepted a post at the University

of Halle, an undistinguished school for
women. His provocative ideas regard-
ing concepts of infinity had put him in
bad standing with his contemporaries,
and many of them opposed his appoint-

ment to the prestigious University of

Berlin. Cantor suffered fits of depres-
sion due in large part to stress related to
his work. He spent the better part of his
later years in and out of mental hospi-
tals and ultimately died in a sanatorium.

Cantor is considered to be the
founder of set theory, and he estab-

lished its relation to transfinite num-
bers. He explored paradoxes that
had existed in mathematics for cen-
turies and even stumbled upon one
of his own, now known as Cantor’s
paradox. Although his theories were
vehemently disputed by his peers, in-
cluding Leopold Kronecker, his men-
tor at the University of Berlin, mod-
ern mathematicians completely accept
Cantor’s work.



Foundations: Sets, Logic, and Algorithms 3

To develop a perfectly balanced working idea of sets, it is sufficient for a
beginner to concentrate on the first part (the italicized part) of this definition.
Note that here well-defined is an adjective to the noun collection and not to the
distinct objects that are to be collected to form a set. What this means is that
there should be no ambiguity whatsoever regarding the membership of such a
collection; well-defined means that we can tell for certain whether an object is a
member of the collection or not. These objects are called members or elements of
the set.

For example, we can talk about the set of all positive integers, even though
no one really knows all of them. But a collection of some positive integers is not a
set because it is not clear whether a particular positive integer, say 5, is a member
of this collection or not. For another example, the collection of students taking
the discrete mathematics course in your school is a set. On the other hand, the
collection of best cars in a city cannot be a set because there is no well-defined
notion of best.

We use italic uppercase letters, A, B, C,..., X, Y, Z, to denote sets. A set can
be described in various ways, but the main point of any description is to specify
the elements of the set in some unambiguous way. One common way, called the
roster method, to describe a set is to list the elements of the set and enclose them
within curly braces. For example, if A is a set of vowels, then we write

A ={a,e,i,o,u}.

For another example, we can describe the set B of all positive integers less than
11 as

B=1{1,2,3,4,5,6,7,8,9;10}.

Let X be a set. If x is an element of X, then we write x € X and say that x
belongs to X. The symbol € stands for belongs to, which, like many other notations,
was introduced in 1889 by the Italian mathematician Giuseppe Peano (1858-1932)
and is believed to be a stylized form of the Greek epsilon. If x is not an element of
X, then we write x ¢ X and say that x is not an element of X. The symbol ¢ stands
for does not belong to.

Let A be the set
A=1{1,2,3,4,5}.
Then 2 € Aand 5 € A. Also, 6 ¢ A.

Let B be the set of first 10 positive odd integers. Then
B=1{1,8,5,7,9,11,18,15,17,19}.
It follows that 9 € Band 2 ¢ B.

We also describe sets in the following manner. Let S be a set. The notation
A={x|xeS,P(x)}
or

A={xe S|P(x)}



4 Chapter 1

means that A is the set of all elements x of S such that x satisfies the property P.
This way of describing a set is called the set-builder method.
For example, if Z denotes the set of integers, then

N={x|xeZ, x> 0}
or

N={xeZ]|x > 0}.
Here the property P(x) is

Pix) { x>10.

In set-builder notation, the set B of Example 1.1.2 can be described as

B={xeZ|xisoddand 1 < x < 19}.

Let A = {2, —2}. Because 2 and —2 are the only integers that satisfy the equation
x* — 4 = 0, we can also write A as

A={x|x€Z, x> —4=0)}
or

A={xeZ|x*—4=0).
Here the property P(x) is

P(x): x> —4=0.

Let A be the set described in set-builder form as:
A = {x| x is a complex number and =1}
Now the equation x*=1,1e., x* —1 =0, can be factored as
(x + D(x— D(x—d)(x+1i) =0,

where 2 = —1 or i = v/—1. This implies that the solutions of the equation pF=1,
where x is a complex number, are x = 1,—1,i,—i. Therefore, using the roster
form, the set A can be written as

A={1,-1,i,—i}.

Throughout the book, we will use numbers to provide examples. Therefore,
we would like to standardize the symbols to denote various sets of numbers as
follows.

N : The set of all natural numbers (i.e., all positive integers)
7Z : The set of all integers

7* : The set of all nonzero integers

E : The set of all even integers

Q : The set of all rational numbers



DEFINITION 1.1.6 »

DEFINITION 1.1.8 »

EXAMPLE 1.1.10

Foundations: Sets, Logic, and Algorithms 5

Q" : The set of all nonzero rational numbers
Q™ : The set of all positive rational numbers

R : The set of all real numbers

R* : The set of all nonzero real numbers

R™ : The set of all positive real numbers

C : The set of all complex numbers

C* : The set of all nonzero complex numbers

We know that every integer is a real number; that is, every element of Z is an
element of R. Similarly, every vowel is a letter in the set of English letters. In other
words, if A = {a, ¢, i, 0, u} and B is the set of all English letters, then every element
of A is an element of B. When every element of a set, say A, is also an element of
a set, say B, we say that A is a subset of B. More formally, we have the following
definition.

Let X and Y be sets. Then X is said to be a subset of Y, written X C VY, if every
element of X is an element of Y. If X is not a subset of Y, then we write X g Y,

(i) LetX=1{0,2,4,6,8},Y =10,1,2,3,4,5,6,7,8,9,10},and Z ={1, 2, 8, 4, 5}.
Then X C Y because every element of X is an element of Y. However,
because 0 € X and 0 ¢ Z, we have X ¢ Z.

Notice that we used the fact that 0 € X and 0 ¢ Z to conclude that
X ¢ Z.We could have also used the fact that6 € Xand 6 ¢ Zor8 € X and
8 ¢ Z to conclude that X ,@ 7. In other words, the elements 6 and 8 also
prevent X from being a subset of Z.

(i) LetA = {a, b, c}and B = {a, ¢, b}. Now every element of A is also an element
of B and so A € B. Also notice that B C A.

(ili) Let A = {Basic, Fortran, C++} and B = {Basic, Fortran, Pascal, C++, Java}.
Then A C B.

Note: For everyset X, we have X C X.

Let X and Y be sets. If X € Y, we also say that X is contained in Y, or ¥
contains X, or Y is a superset of X (written Y 2 X).

Notice that in Example 1.1.7(i), every element of X is an element of Y. How-
ever, there are some elementsin Y thatare notin X. Suchaset X is called a proper
subset of Y.

Let X and Y be sets. Then X is a proper subset of Y, written X C Y, if X is a
subset of Y and there exists at least one element in Y that is not in X.

Let A = {a, b} and B = {a, b, ¢}. Because every element of A is an element of B, we
have A € B. Now ¢ € Band ¢ ¢ A. Therefore, there exists an element in B that is
notin A. It now follows that A is a proper subset of B, i.e., A C B.

The set of all even integers is a proper subset of the set of all integers. In set
notation, {2n|n € Z} C Z.

Notethat NCZCcQcC R cC.



