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FOREWORD

This volume contains 68 papers presented at the fourteenth Annual Design Automation Confer-
ence held September 24-28, 1988 in Orlando,Florida. The conference, sponsored by the ASME
Design Engineering Division, has been organized by the Division’s Design Automation Committee.
It is the goal of the conference to provide a collection of papers which, along with the session
presentations and discussions and the luncheon program, will give mechanical design engineers
not only some added knowledge in the areas of design automation, but also accompanying mo-
tivation which will result in them being to some degree better equipped to meet the current and
future challenges in the area of mechanical design. It is hoped that this Conference Proceedings
will provide an efficient dissemination of information to all the design automation community.

The future growth in industrial productivity and technical advancement of products depend upon
research and development in the area of mechanical systems design and desigh methodology.
The importance of the research in mechanical design has been acknowledged in recent years by
the National Science Foundation through its programs in mechanical systems and design metho-
dologies. Industrial research in the field is also increasing.

The design automation conferences are held annually each fall where sessions are devoted to
theoretical and applied synthesis and analysis of mechanical systems. Topics of interest include
expert systems in design, optimal design, computer aided design and engineering, design meth-
odologies, hardware/software systems evaluation, simulation and automated design of mechanical
systems, and related areas. The areas that are receiving increased attention in the design automation
community are expert systems, artificial intelligence, design for manufacturability and assembly,
and computational geometry- specifically the underlying theories and principles as these relate to
design automation. The papers included in this volume on these subjects is a reflection of this
trend.

As Papers Review Chairman, | would like to gratefully acknowledge the cooperation and help of
all reviewers in reviewing the papers on time. | am thankful to Professor Glen Johnson, Chairman
of the Design Automation Committee, for his valuable suggestions and help in handling my job. |
wish to thank the Chairman of the Design Automation Conference, Professor Bahram Ravani, for
his cooperation and help in bringing out this proceedings volume. Thanks are also to the exceptional
ASME staff members in New York for getting this volume printed. My special thanks are due to
Dr. Winfred M. Phillips, Head, School of Mechanical Engineering, Purdue University for his support
and help in carrying out the task of Papers Review Chairmanship. My final thanks are to Ms. Patricia
Booth who cheerfully helped me in the secretarial work on numerous occassions.

S. S. Rao

School of Mechanical Engineering

Purdue University, West Lafayette

Papers Review Chairman

Fourteenth Design Automation Conference
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A COMPUTER AIDED GEOMETRIC METHOD FOR DEVELOPMENT
OF THICK SURFACES

B. Gurunathan, Research Scholar and S. G. Dhande, Professor of Mechanical
Engineering and Computer Science
Indian Institute of Technology Kanpur-
Kanpur, India

ABSTRACT

Uniformly thick surfaces are considered
for development. A thick surface is consider-
ed to be a set of thin surfaces lying one over
the other. A mean surface is defined. Other
surfaces in the set are defined in terms of
the mean surface as well as the distance bet-
ween them and the mean surface. Once the mean
surface is developable, other surfaces are
shown to be developable. These surfaces are
developed individually and then a co-ordinate
transformation is applied to these developments
to take into account the fact that the origin
and axes of the development are different for
different surfaces. This completes the geome-
trical development of the thick surface. Plas-
tic deformations taking place during the manu-
facturing process are not taken into account
here.

INTRODUCTION

Surfaces can be classified into develop-
able and non-developable surfaces. Planes and
single-curved ruled surfaces are developable.
Geometric methods like parallel line method,
radial line method and triangulation are avail-
able for developing surfaces [1,2]. These are
manual, time consuming and are subjected to
drafting inaccuracies and instability. To
overcome these defects, suitable mathematical
modelling has to be developed and the develop-
ment process has to be computerised. Taking
into account the fact that the geodesic cur-
vature of a space curve is bending invariant
and that the isometric as well as the isogonal
and isoareal mapping of a surface £3] onto a
tangent plane of it is the development of the
surface, suitable mathematical modelling and
algorithms have been proposed by Gurunathan
and Dhande for the development of ruled surfa-
ces with single or double directrices [4,5].
Based on this, conical and helical convolute

surfaces have been analysed and mathematical
modelling and algorithm for their development
have been proposed [5,6,7] Also an appro-
ximate method for the development of ducts -
double-curves surfaces - has been proposed by
treating the duct to be a series of conical
convolutes [5] .

So far the development of thin surfaces
only have been considered. Many of the sur-
faces that are used in industry, such as volu-
te casing of turbines, various ducts under pre-
ssure, have considerable thickness. Large
amount of plastic deformation takes plaee
during their manufacture. So the development
process has to take into account not:-only the
geometrical aspects of development but also
the plastic deformations taking place during
manufacture. It is proposed to consider the
geometrical aspects first and obtain the devel-
opment of the thick surface and then to take
into account the plastic deformations and get
the final development of the surface. In this
paper the first part of the development proce-
ss - development taking into account the geo-
metrical aspects only - is considered [5].

Surfaces of uniform thickness are consi-
dered here. A mean surface that divides the
thick surface into two halves of equal thick-
ness can be considered such that, at any point
on it, the top and bottom surfaces of the thick
surface are at equal distance. These two hal-
ves can further be divided into a number of
slices of uniform thickness. The surfaces that
separate these slices from one another, toget-
her with the tcp and bottom surfaces of the
thick surface form the set of surfaces repre-
senting the thick surface., These are parallel
to one another (Figure 1). The end surfaces
of the thick surface bound the set of surfaces.
The edges of the various surfaces in the set
are the lines of intersection of these surfaces
with the end surfaces of the thick surface.



tangent vectors drj,1/d6j and dr j

THE SET OF SURFACES

Let h be the thickness of the thick
surface and sy be the number of slices into
which each half of the thick surface is to be
divided. Then the total number of thin sur-
faces in the set of surfaces representing the
thick surface is 2sy + 1. Let Sp¢, kt = 1,2,..

.(2s,+1), represent a surface in the set,
Let S] represent the mean surface. The dire-
ction of the inward normal or that of the
outward normal to the mean surface can be taken

as positive. Then Sg,, kt = 2,3, ,(sp+l)
and Sy, kt = (s + 2 (sp + 3),...,(28p+1)
represent respectlvely the surfaces in the
positive and negative directions of the normal
in the increasing order of distance from the
mean surface. Let ci, be the distance of the
surface Sy from the mean surface. The dis-

tance is positive if it is along the positive
direction of the normal to the mean surface;
otherwise it is negative. If the slices are

of equal thickness, then
€ = (h/25h) (kt = 1) kt = 2,3,...,(8,+1)
and
Cpe = -(h/2sp) (kt - Sy 1)
kt = (s,+2),(sy#3),....(25,+1) ==+ (1)

THE MEAN SURFACE

The mean surface is considered to be a

developable ruled surface. Let the lines
Dj 1 and DJ , the lines of intersection of
the mean sufface with the end surfaces E; and
E, be respectively the primary and secondary
dlrectrices (refer to Figure 2). Let rj, 1 and

1 be the posxtlon vectors of the gener1c
po1nts on the primary and secondary directrices
respectively. The subscript 1 stands for
the mean surface and the subscripts i and j
stand for the primary and secondary directri-
ces respectively. If 6; and ©j are the para-
meters of the directrices, then the condition
for the developability of the mean surface is

given by Lh,ﬂ
4% 1 a1
— e - =
(Fe, o v LR - R T IR R
* J vee(2)

A generatrix P] Q1 of the mean surface the
,1/d@;, the unit
normal to the mean surface, ns and the unit
yector g along the generatrlx are shown in
Figure 2. Also shown in Figure 2 is a unit
vector e which together with the vectors g

and n; form a right-handed system of mutually
perpendicular unit vectors; e = X ng. With
the point P; and Q) as origims, local co-ordi-
nate frames P} - g n e and Q, - gn, e can

be considered.

OTHER SURFACES

Qkt is the line of intersection of
the surgace Sgt with the g - ng plane of the
local co-ordinate frame Py - g ng e (Figure 3).

It is at a distance cyy from P] Q1. Pgy and
Qrt are the points of intersection of the line
Pt Qkt with the end surfaces Ej and Ep respe=
ctively. Let Op; X11 Yp1 Zp) be a local co-
ordinate frame such that Xj;; Yp; is the plane
of the end surface E] and Zp] axis is normal
to the plane Ej. O - XYZ is the global co-
ordinate frame.

Let the position vector of the point Py
be [x,y,z,l],Exl, ¥1, 0, 1} and [x sCres 0,17
with respect to three co-ordinate frames

o - XYZz 01 - Xp1 Yyp 211 and Pl- gn, e
respectively. Then
.
i ey o ]
1T 1 Ll X
g |BE, BeoEnp 20Ey (B~ E YRl *
(p,) (o_.)
L 1 L1
Y -
VIF |81 Be-¥py &Y (Zy L Yo ¥py || Cke
(p.) (o .)
1 L1
0| |B%r1 Be-Zpy &-%pp (Z4)7E >z ||°
1 0 0 0 0 JL1 4
L < -
(2,) 0, ) 43
where r,. and are the position vectors

of the édlnts P] and 0Ll respectively expre-
ssed in global co-ordinates. In the above
equation, to avoid confusion, vector sign is
not used with Xpl, Y;1 and Zp; although these
are unit direction vectors along the axes Xp1s
YLl and Z11 respectively. Since the point Pj

is on the XL1 YL1 plane,
P (0]
(r( ) _ ( Ll)) . =0
-i,1 = L1 )
So, from the third row of the Eqn. (3),
%% - = By & Hpy
—_—c,,.
g - ZLl kt
Hence the position vector of the point Pre is
e | 0 mzy
—i,kt Iil E-Z., kt & ktls”

e (8)

Similarly a local co-ordinate frame

- X2 Yy 9 21,9 where X2 Yy, is the plane of
the end surface Ep and Zjyy axis is normal to
the end surface E2, can be considered. Then
the position vector of the point Qgt is given
by

OL2

r(th) r(Ql) ) 21, . . .
L5kt I g Z, kt £ kt g
oo (5)

The conditions to be satisfied by Eqns.(4)
and (5) are that

g 2,70

and

g - Z;, * 0. c=+ (6)



These conditions imply that the generatrix does
not lie on the end surfaces E] and E2 respect-—
ively.

If the generatrix is perpendicular to the

end surface Ej, then g = Z,, and Eqn.(4) redu-
ces to
(P,¢) ) r(Pl)+ - -
ikt Zin kt Zg°

Similarly when the generatrix is perpendicular
to the end surface Ey, g = Z and

L2
(th). r(Ql)+ e 83
ikt~ Z3,1 kt 2s-
(?))
The vectors r. g and ng have 8; as

their parameter. Tﬁé end surface E] is a planar
one and hence the vector Zp] is a constant
vector. Hence it can be seen from Eqn. (4)

(Pyy)
that the vector r. Lkt ?as 8j as its parameter.
Q
Similarly the vector tj kt has 6;j as its para-
meter,

Corresponding to each generatrix of the
mean surface the vectors g, ng and e can be
obtained and then the line of intersection of
the - ng plane with the surface Skt can be
obtained. The points of intersection of this
line with the end surfaces E; and E2 can be ob-
tained from Eqmns. (4) and (5 Thus the lines
Dj kt and Dy ., the lines of intersection of
thé surface 8kt with the end surfaces E] and
Ep, can be obtained. The points Pkt and Qp¢
are the generic points on these lines respect-
ively. The lines P} Pkt and Q1 Qt are the
lines of intersection of the g - ng plane w1th
the end surfaces E; and Ej respectively.

DEVELOPABILITY OF THE SET OF SURFACES
(P, )

Differentiating the vector r.
respect to 9. =L 5K

(P, ) (?)
d£1 kt - dﬁi 1 _ Es'le c g& + % dn
de1 de1 g'le kt dei i
dng dZ dg
(E‘ZLI)(EEZ'ZL] n,- d61 ) (n —ZLI)(EE
dZL1

Zo B S5
L1 de;

with

2
(g.2.,)

de. -

Hence the vector _—36__-_ is acting in a plane

i
parallel to the g - e plane. Similarly the

8 ¢ (th)
derivative of the vector I: et with respect to
drgokt) ’
the parameter ©:, —=2—_  is also acting in the

i’ dei °

plane parallel to the g - e plane.
(Qkt) (Pye)

Thus the thr?; v§ctors (Ej,kt_zi,kt s

(Ppe) Kt

. de.

drs Jkt /de and dEJ,kt/ 5

in a plane parallel to the g - e plane. The
2, (q, )

vectors dr. kt/de. and dr kt/de.

gents to the 11nes D; Lkt and DJ‘kt respectively.

So the line Pgt Qg¢ can ‘be considered as the

generatrix of the surface Sy and the condition

for developability of the surface St is satis-
fied. Thus the surface Syt is a developable
ruled surface and the lines Dj kt and Dj gt

are the primary and secondary directrices of

the surface Sg¢.

Hence it can be seen that

(i) If the mean surface is a developable ruled
surface, all other surfaces are also deve-
lopable ruled surface,

(ii) if the lines of intersection of the mean
surface with the end surfaces Ej and E2
are respectively the primary and seconda-
ry directrices of the mean surface, then
the lines of intersection of the other
surfaces with the end surfaces E; and E2
are respectively the primary and second-
ary directrices of the surface concerned,

(iii)for a given position of the generic

points of the primary and secondary dire-

ctrices of the mean surface, the positions

of the generic points of the primary and
secondary directrices of other surfaces
are given by the lines of intersection of

the g - ng plane with the end surfaces E}

and Ep respectively,

the parameters for the primary and second-

ary directrices of all surfaces are the

same O6j and O3 respectively as for the
primary and secondary directrices of the
mean surface. Corresponding to a parti-
cular generatrix of the mean surface
defined by a pair of (8j, ©j) values,the
generatrices of all other surfaces are
also defined by the same pair of (91,6 )
values.

are co-planar,acting

are the tan-

(iv)

DEVELOPMENT OF THE SET OF SURFACES

The set of surfaces are developable ruled
surfaces with two directrices and the develop-
ment of these surfaces are carried out indi-
vidually by isometrically mapping the primary
directrix of surface concerned and then iso-
gonally as well as isometrically mapping its
generatrices [4] . The geodesic curvature of
the primary directrix is equal to the curva-
ture of the curve of the development of the
primary directrix. The Serret-Frenet equations
are used for isometrically mapping the primary
directrix.

ARC LENGTH OF THE PRIMARY DIRECTRIX OF THE
SURFACE Skt

Equations (4) and (5) can be rewritten as

e (10)

. = ’ + :
: = ¢ ke Y



and
ikt - Rl 0t S Y3 = (L)
where
n . 2
- 1
-‘Li = s _.S_—_ZE g + Es e (12)
g - %1
and
n « Z
v., = - :3___522 g + n_ . v (13)
J £ - %L2

The vectors v; and vj are along the lines of
intersection of the g - n; plane with the end
surfaces E, and E, respectively.

The derivative of r; Skt with respect to
ei is

. . +
Zike T Zig1 T Cke I we (14)
where the dot above the vectors indicate their
derivative with respect to 6;. The rate of
variation of the arc length of the primary

directrix with respect to 6; is given by

Sike - (i1, * 2ope Ij peXp t 1okt ¥
v;) *(15)

The arc length of the primary directrix 1is
obtained by integrating the above expression.
For a given value of 6j, the values of r
and Vv: are constants and hence €. is”3’

- i,kt
function of St

MAGNITUDE OF GEODESIC CURVATURE OF THE PRIMARY
DIRECTRIX OF THE SURFACE Skt

The second derivative of r;

pect to 9 is skt with res-

r—i,kt s (16)

T Ii,1 ot ke Yi
where the two dots above the vectors indicate
their second derivative with respect to CH

The magn1tude of the geode51c curvature for
the primary directrix is

o Like X Ej ke
k = 3 “e-m
8i,kt :

s
i1,kt
and substituting for I ktr Ii,kt and s,

Bio ® B, v cee(dy ) X VitVyxE, )
" Ckt Ii * I n
8: ket - P . 5 . 2 . “—s
3 (By,17Eg, * 2oy, Ei,l'!i+ckt1}'
v.)3/2
we (17)

For a given value of ©6; the magnitude of geo-
desic curvature k is a function of ¢, .
i,kt kt

DEVELOPMENT OF THE THICK SURFACE

The origin and axes of the development

are different for different surfaces of the
set of surfaces representing the thick surface.
Hence a co-ordinate transformation is to be
carried out and the co-ordinates of the generic
points on the development of the primary and
secondary directrices of the surfaces in the
set are expressed in terms of the origin and
the co-ordinate axes of the development of the
mean surface.

Consider the co-ordinate frame Og Xd & &
det det where Odkt’ xdkt and det are res-

pectively the origin and the x and y axes of
the development of the surface Sygy. The det
axis is perpendicular to the plane of the de=
velopment, Let Eokt’ €0kt and D0kt be the unit

vectors along the Xdkt Y4 and Zg axes .Here
0kt is the unit tangent vEEtor to ffe primary
dlrectrxx of the surface Skt at the starting
point and noy is the unit normal to the sur-
face at that p01nt The vector eg, is given
by kt

e = n x t

Ope =0t = “Oe
Let the co-ordinate frame for the development
of the mean surface be 04y - xdl Ydl Zdl and
the corresponding unit vectors ~be to1> €0
and ng Then the co-ordinates of the devel-
opment of the surface Skt’ Xy 2V y 30, 1

. t
can be expressed with respect to the co-
ordinate frame 0, -X Y Z as

dp 4y 4y g

r -1 = - o -

Fdme | 911 %12 913 %1a *a, .
y q q q q y
am,_, o Y22 923 924 d .
z =
dm, | |931 932 933 934 .
B 1 %41 %2 %3 Y% 1]
where
q =£ _t_ q _e_ -£ s q E E
11 (10,0 Y12 6,.°=0,"%13" 2o, "0,
(Odkt) (Odl)
a4 = (z -z Yoty s 9,1 =ty &g s
14 0, %21 0., “=0y
9,9 = & .e q n o
22 0, .20, 923 0, 20,
0, » ©a
a,, = (r “F r ).e 1 E L
= - 3 ). * 2 3
24 i v 0 31 0, . T0,
q = e q n, .n
32 7 20, .20, 933 0 0,°
0, ) (0,
Qag = (2 ¢ - ¢ T a =0 =0
34 T E "0, 41 > Q42 ;
Q43 = 0, q,, =1 iee (18)
4 €0,y 0, )
4y, a,
where r and are the positive ve-

ctors of the po1nts Odkt and 0;, which are

nothing but the generic points on the primary



directrices of the surface Sy and the mean

surface at the starting point. From Eqn. (4),
(04 ) 0, n, .2
dkt d, 01 L1 .
r - r = - — n
- = iol'le ke 8o, "Cke S0
==+ (19)

where 20, is the unit vector along the gener-

atrix of the mean surface at the starting

point. Since all surfaces are parallel,
ng = ny . Then Eqns. (18) reduce to
Tkt =
rx k k k k x
dmkt 11 12 13 14 dkt
.
dmpe | k21 K22 ka3 Ko | Fa
z =1k k k k 0
dmg . 31 32 33 34
Lo =k k42 %43 fas |1
«es (20)
where
Koy = t, oty 5 ky, = ey .ty , ky3 = 0,
11 okt 01 12 okt 01 1
2o, %11
k = c g k t -85
14 501'ZL1 ke o, Lo v K21 0,20,
20, %11
k = e e k =0, k = -
2 = L8 3 s
2 Okt 0l 2 24 20 .le
t Bo S0, K31 = 0 K3y 7 0 kg3 = L,
K34 = cpps k4p = 0, Kyp =0, ky3 =0, kyy =1

From the above equations it can be seen that
zZdmgey = Cky always. This is because the sur-

face Syt and
and are at a

the mean surface are parallel
distance cg¢ from one another.So

not only the
lopments are

two surfaces but also their deve-
parallel and are at a distance
another.

Crt from one
ALGORITHM FOR THE DEVELOPMENT OF THICK SURFACE
Step 1(a). The end surfaces E] and E7 are spe-
cified i.e. the local co-ordinate
frames Oy XLl Yyy 213 and

Opg - XL2 Y19 Zp9 are specified.

The primary and secondary direct-
rices of the mean surface and the
thickness of the thick surface are
specified.

The number of surfaces in the set
of thin surfaces representing the
thick surface is fixed and their
distances from the mean surface is
calculated.

The development of the mean surface
is carried out,

(b).

Step 2 .

Step 3 .

(a)

(b)
(e)

(d)

(e)

(£)

Step

Step
Step

Step

Step

Step

Step

Step

Step

The value of the parameter ©j of the pri-
mary directrix of the mean surface is fi-
xed and from the condition for develop-
ability the value of the parameter 8j of
the secondary directrix of the mean sur-
face is fixed.

The vectors rj 1, Ij 1>
are calculated. ’
The arc length, the magnitude of geodesic
curvature and the arc-tangent angle of the
primary directrix and the angle between
the arc-tangent and the generatrix are
calculated.

The. co-ordinates (xgq;

B: g ¥i and ¥

1 Ydi,l) and

(xdk 1 Ydj 1) of the ends of the gener-
3 3

atrix in the development

For the initial position

the vectors ngj, 801 and

are calculated.
of the generatrix,
to; are noted.

The vector ep; is calculated. For other
position this step 3(e) is omitted.

The parameter 6; is incremented and the
above steps 3(a) to 3(d) are repeated till
the entire mean surface is developed.

4, Corresponding to the various positions
generatrix of the mean surface, the
first and second derivatives of the
vector vj with respect to the parame-
ter ©; are calculated.

5. The initial position of the generatrix
of the mean surface S; is considered.

6. The surface Sy, kt = 2, is comnsi-
dered.

7. The position vectors ikt and Ij,kt
of the ends of the corrésponding
generatrix of the surface Sg¢ are cal-
culated using Eqns.(10) and (11).

Also the vectors fj ,kt and Tj ,kt are
calculated using Eqns.(14) and (16).
The unit tangent vector to the prima-
ry directrix of the surface S ¢ is
also calculated.

8. The arc length, the magnitude of geo-
desic curvature, the arc-tangent angle
of the primary directrix and the angle
between the arc-tangent and generatrix
of the surface Sigt are calculated.

9. The co-ordinates (Xdi,kt’ ydi,kt)

*aj,ker Yaj ke

generatrix in the development of
the surface Skt are calculated.

10 .For the initial position of the gener-
atrix of the surface Sigt, the vector
0yt (Eqn~20) is noted. Also the

vector eg, ., is calculated.

and ) of the ends of

the

For other

positions of the generatrix this step
is omitted.

11.The other surfaces in the set of sur-
faces are considered one by one and
Steps 7 through 10 are carried out.

12.The other positions of the gemeratrix
of the mean surface S; are considered
one by one and Steps 6 through 11 are
carried out till the development of
all the surfaces in the set are obta-
ined individually.



Step 13. The development of the individual
surfaces are stacked properly using
Eqns .(20) and the development of
the thick surface is obtained.

CASE STUDY

The development of a thick super-conical
surface whose mean surface is a super-conical
convolute is presented here. If atleast one
of the directrices of a conical convolute is
a super-ellipse, then the surface is called
a super-conical convolute. A generic point
on a super-ellipse, with respect to a local
co-ordinate frame 0y - XL Y. ZL’ is given by

r -
a cosz/n (]
. 2/n
5 - b sin CJ cee (21)
0
L |

where a,b,n and 6 are respectively the semi-
major diameter, the semi-minor diameter, the
power index and the parameter of the super-
ellipse. The origin Oy and the Xy and Y; axes
of the local co-ordinate frame coincide res-
pectively with the centre and the major and
minor diameters of the super-ellipse. With
respect to the global co-ordinate frame 0-XYZ,
the generic point on the super-€llipse is
given by

£ = [T] I (22)
where [T] is the 4 x4 transformation matrix
connecting the local co-ordinate frame 0. -
XL Y, Zp with the global co-ordinate frame
0-XYZ. Mathematical models and suitable al-
gorithm for the development of super-conical

??n%flutes are given by Gurunathan and Dhande
5,6] .

The geometric details of the super—coﬁiéal“

surface are given in Table 1. The orthogra-
phic views and the development of the thf &k
surface are given in Figures 4 and 5 respect-
ively. -

CONCLUSIONS

A geometrical method for the development
of thick surfaces is given. In this geometri-
cal method the large amount of plastic defor-
mations that take place during the manufactur-
ing of the thick surface from thick plates are
not comnsidered. To facilitate the development
process, the plastic deformations and the geo-
metrical aspects of development are considered
separately. Obtaining the development consi-
dering only the geometrical aspects is the
first stage of the process. Suitable mathe-
matical models are to be evolved to apply the
effects of plastic deformations to the develop-
ment obtained in the first stage and get the
final development. The thick plate cut as per
this final development and subjected to the
required manufacturing processes should give
the required thick surface. Work in this dire-
ction is being pursued by Gurunathan and Dhande.

-
- ®= =

Sometimes it may be necessary to develope
a thick surface whose mean surface is, as a
whole, not developable, but is piecewise de-
velopable. Then the mean surface can be divi-
ded into a number of surface patches, each
one of which is individually developable, The
corresponding portions of the thick surface
constitute a set of thick surfaces in series.
Adjacent thick surfaces meet along a common
edge. Mathematical expressions to define the
common edge, suitable mathematical models and
necessary algorithm to geometrically develop
these multiple thick surfaces in series are
given by Gurunathan [5,8].

Volute casings of turbines and ducts
under pressure are fabricated out of thick
plates. Such thick ducts, which are double-
curved surfaces, can be approximated to a num-
ber of thick super-conical surfaces which are
in series and each one of these super-conical
surfaces can be developed individually.

Table 1. Details of the Thick Surface
Thickness of the surface =0-4
Number of slices into which each = 2
half of the thick surface is to be
divided
Details of the Mean Surface
Primary Directrix
Semi-major diameter of the 0.9
super-ellipse
Semi-minor diameter of the 0.58
super-ellipse
Power index of the super- 3.1
ellipse
Transformation -0.463 -0.835 0.293 4.72
matrix 0.605 -0.052 0.794 3.52
-0.648 0.548 0.530 4.48
0.0 0.0 0.0 1

Secondary Directrix

Semi-major diameter of the 1.0
“stiper-ellipse
Semi-minor diameter of the 0.6

super-ellipse

Power index of the super- 3 .2
ellipse
Transformation -0.447 -0.894 0.0 5.0
matrix 0.0 0.0 1.0 5.0
-0.894 0.447 0.0 5.0
0.0 0.0 0.0 1
0.293
Normal to the end = 0.794
surface El’ZLl 0.530
0.0
Normal to the end = 1.0
surface EZ’ZLZ 0.0
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CONSTRUCTIVE SOLID GEOMETRY OF THE TRIHEDRON
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Abstract

As a first step towerd a Constructive Solid Geometry
for designing general polyhedra, this paper develops the
set theory of the trihedron, loosely speaking any set
combination of three planar halfspaces (monohedra). The
trihedron can be decomposed precisely into its primitive
monohedra and its CSG-tree of union or intersection
operations with no designer topologicel input other then
the convexity or concavity of each edge, giving e
human-computer interface simpler than those for existing
right-hand rule boundary representation methods. The
somewhet visual trigonometric concepts of classical solid
geometry are formulated in terms of vectors and matrices
oppropriate for numerical computation. This
reorganization may be useful not only for designers of CAD
systems, but also for educetors seeking to strengthen and
modernize the geometric education of engineering students
wanting to make full use of CAD/CAM technology.

Introduction

Computer Aided Design (CAD) has in the last decade
evolved from computerized two dimensional drafting and
documentation through 3D wireframe programs to the
contemporary solid modeling systems needed for computer
integration of design and manufacturing (2,4,6,8). But in
the words of pioneers Yoelcker and Wesley (11), “One
hard-learmed lesson of computer geometry is thet
implementing the simple cases of geometric problems is
rather easy, but the ability to handle all possible cases
may require an order of magnitude more work".

Most solid modelers employ either boundery
representation (b-rep) or constructive solid geometry
{(CS6) (6,10). CSG systems assume much of the burden for

insuring geometric and topological validity that B-reps
place on the designer, but in CSG it is difficult or
impossible to design and detail certain objects with
non-rectanguler cormers. Although such arbitrery
polyhedra can in principle be designed with B-rep systems,
the level of detail required to specify all those vertices,
edges, and faces limits the complexity the designer can
tolerate. The present article begins a theoretical studg
intended eventually to produce a CSG system appropriate
for designing arbitrary polyhedra of interest to designers
not only of complicated multifunctional machine parts, but
also of structures beyond, if not the imagination, then ot
least the detailing capability of 20th century architects.

CS6 based on primitive solids (9) creates set unions,
intersections, or differences of such primitive solids as
rectangular prisms, cylinders, cones, and spheres -- all
bounded point sets. The range of describable objects is
limited by the primitives available, which is why such
existing CSG has difficulty moking, even with skew wedge
primitives (10), polyhedra even as simple as a star
tetrahedron. But by adding an unbounded general trihedron
primitive, one might with proper precaution moke a CSG
system for polyhedra. Thus os a first step toward
polyhedral CSG this paper develops the set theory of the
trinedron, loosely speaking any set combination of three
planar halfspaces (monohedra).

Because the trihedron is the simplest possible object
with o solid interior, it hes received much study in

.classical solid geometry (1) end con be generated on o

drefting board with the techniques of descriptive
geometry (S). But existing theory neither distinguishes
between interior and exterior nor lends itself to digital
calculation without visual control by the designer. The



