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Introduction

There are many fields of stochastics where multi-parameter pro-

cesses can be encountered. For example, to register the positions

of the spins of a ferromagnetic substance at a fixed instant of
time, one has to attach an appropriate state space to every

point of a three-dimensional lattice. Mathematically this leads
to a family of random variables indexed by a subset of:R3, a
special case of a so-called stochastic field. Correspondingly,
formalizing "multivariate observations" may lead to a stochastic
process indexed by a set which, according to its order properties,
can be interpreted as a multi-time. The infinite dimensional
Ornstein - Uhlenbeck process which appears in a variant of
Malliavin's variational calculus, may be considered as a stochastic
process with a multi-time or a kind of mixed space-time parameter
set (see Ikeda, Watanabe [24]). A close relative of it is the
"Wiener sheet" which is undoubtedly the most frequently studied
among all multi-parameter processes with a continuous parameter
set (see Follmer [21]). Walsh [43] encounters the Wiener sheet

in the study of mathematical models which may arise in neuro-
physiology or also in problems related to heat conduction or
electrical cables. We finish our selection with a more recent
example. The investigation of the "Poisson chaos" seems to pro-
duce a new kind of infinite dimensional Ornstein - Uhlenbeck
process which, considered as a stochastic process indexed by a
two-dimensional continuous variable, behaves like a Poisson
process in one direction and like a Brownian motion or a more
general Gaussian process in the other direction (see Ruiz de

Chavez [39], Surgailis [41], [42]).



This book is meant as a contribution to the foundations of

a general theory of multi-parameter processes and their stochastic
calculus. Like most of the authors who have studied this theory
since 1975, when a first pioneering paper of Cairoli, Walsh [ 12]
appeared, we restrict our attention to two-parameter processes.
We have a good reason to do so, which might be underestimated
at present but will become clear along the way. The considerable
degree of complication we will have to face may be compensated
by the geometrical simplicity of the notions and results in a
two-parameter setting. On the other hand, we also have good
reasons to hope that our results can be extended to an arbitrary
finite number of parameters.

In the one- and two-parameter theory alike, martingales -
the processes we will investigate - play an equally important
and central role. An integrable process M which, like all two-
parameter processes considered here, is a family of random vari-
ables on our basic probability space (©,F,P) indexed by [0,1]2,

is called martingale with respect to our basic filtration (¥ ) 5
tel0,1]

(i.e. a family of o-algebras in ¥ ,where Ft represents the infor-
mation available at t€[0,1]2, which is increasing with respect

to coordinatewise linear order on [0,1]2) if M, is Ft-measurable

t

(i.e. M is adapted) and for s <t conditioning M, by FS gives Ms'

t
One of the primary aims of an advanced martingale theory consists
in the development of a "stochastic calculus" which is the basis
for the field of stochastic differential or integral equations
and the stochastic counterpart of the classical infinitesimal
calculus. Its main theorem, known as "Itd's formula", corresponds

to the fundamental theorem of calculus relating differentiation

and integration. Given a function x of bounded variation on



[0,1]2 which vanishes on the axes, and a C1—function f, the clas-
sical fundamental theorem states that f(x(1’1))—f(0) is given by
the integral of f'(x) with respect to the measure dx defined by
the variation of x over [0,1]2. Correspondingly, the simplest
version of It8's formula is for processes X on QX[O,1]2 vanishing
on the axes and whose trajectories X(w), w€Q, have bounded vari-
ation. It is given by the classical formula, trajectory by tra-
jectory, the random variational measure dX(w), w€R, replacing dx.
As it happens, many interesting stochastic processes, like for
example the Brownian motion and its two-parameter analogon, the
Wiener sheet, have infinite variation, i.e. their trajectories
are non-rectifiable curves. One of the main achievements of early
stochastic calculus for one-parameter martingales M was to real-
ize that in its fundamental theorem besides the "variational in-
tegral" with respect to dM, which corresponds to the classical
one and becomes now a "stochastic integral", a second order term
appears. It is an integral of the second derivative of f with
respect to the "quadratic variation" of M. Given a sequence of
partitions of the interval [0,t] by intervals whose mesh goes to
zero, the quadratic variation [M]t of M at t can be defined as
the limit in probability of the sequence of sums of squared in-
crements of M over the intervals of a partition. Taking a key
position in It8's formula, the quadratic variation process is
one of the most important basic processes of stochastic analysis.
This is equally true for the theory of two-parameter processes,
for which quadratic variation is analogously defined with respect
to intervals in [0,1]2.

However, the problem of the existence of quadratic variation
for two-parameter martingales proved to be tough, and the progress

in solving it slow. In 1981, Zakai [46] established existence for



L4—integrab1e continuous martingales, extending the proof of
Cairoli, Walsh [13] for martingales of the Wiener sheet. In 1984,
Nualart [36] succeeded in generalizing this result to square inte-
grable continuous martingales. For more general (especially non-
continuous) martingales, only few fragmentary results were avail-
able (see Frangos, Imkeller [22] and the references there). One
One of the two main subjects of this book is to derive the existence
of quadratic variation for square integrable and, more generally,
L log+L—integrable two-parameter martingales. The second one lies
in the method applied to accomplish this aim. It consists in de-
riving a representation theorem for square integrable martingales
by various "pure jump parts" and a "continuous part" and construc-
ting their quadratic variation from those of the parts. This theo-
rem is the end-product of a procedure of "reduction of jumps"
which stimulates a deeper study of the structure of martingales
and their general theory and is of independent interest, as well.
The execution of this entire program, however, attains a degree
of complication which makes us prefer to shape its contours at
first in the case of a one-parameter martingale M indexed by
[0,1] with respect to a filtration (Gt)t€[0,1]° This will serve
as a "red thread" later.

The significance of the concept of "stopping" is one of the
big differences between one- and two-parameter theory. Whereas in
the former "stopping times" take an eminent place and influence
almost all methods of investigation, "stopping points", "stopping
lines" and related notions are more peripheric and of limited
use in the latter theory. The procedure of separation of jump
parts and computation of quadratic variation we are about to
sketch, has to take this into account. It will not make any es-

sential use of a stopping notion. Therefore, even in the classi-



cal one-parameter martingale theory, although the results are
known, the notions and methods we use to derive them seem to bear
some novelty.

As one of the most striking elementary phenomena about M, the
expected number of up- and downcrossings of a given space inter-
val is bounded. This readily leads to one of the important regu-
larity results of the theory: M possesses a version whose sample
paths are right-continuous and have left limits. We denote this
regular version again by M and can now talk about "jumps". A point

(w,t) in ©x[0,1] is called jump of M, if Mt(w)—M _(w) #0, where

t

Mt_(w) is the left hand limit of M(w) at t. Now the observation
made above can be put in more stringent terms: for any n €IN, the

random set S, of jumps of M of heights between % and H%— has [0,1]-

1
sections whose cardinalities constitute an integrable random vari-
able. In particular, they are finite a.s..

Assume that M is square integrable in addition. We plan to
get a decomposition of M by a jump part and a continuous part
(both square integrable martingales) by successively extracting
the jumps of M on Sn’ n€N. Fix n €N and consider the jump pro-
cess Mn of M, restricted to Sn, which, at time t, is just the
sum of all jumps of M on Sn up to t. The process Mn is of boun-
ded variation, but, of course, need not be a martingale. Yet,
the part we want to cut off M in order to obtain a continuous re-
mainder, is to be a martingale. Therefore, our task could be put
in the following terms: compensate Mn by a process Cn of integra-
ble variation in such a way that firstly the resulting process
Mn—Cn is a martingale and secondly Cn creates no new jumps, i.e.
Cn is continuous. The first requirement will ensure that the de-
composition we obtain is a martingale decomposition, the second

that the remainder after finishing the cut-off procedure is in-



deed continuous.

The solution of this compensation problem requires a closer
study of measurability concepts in the product Qx[0,1]. To see
which o-algebra might play a role, let us try to find conditions
under which we face the simplest case - the case in which Mn is
already a martingale and compensation unnecessary. First assume
that Sn = Qx{to} is a deterministic set, for some tO€[0,1]. Let
(t ) be a strictly increasing sequence in parameter space

m'm€IN

which converges to to' and let x™ = (M, -M ) 1 Now the

t Tt ;
(@) m (@]

1]1°
martingale property of M states that for any pair (u,v) of times,
usv, conditioning MV by Gu gives Mu' This implies that Xg, condi-
tioned by Gu, may only differ from Xﬁ if tm<u<to. But, as becomes
evident from Doob's maximal inequality, the convergence Xm->Mn as
m—> o~ is dominated and thus Mn turns out to be a martingale. Next
assume that Sn is a random one point set. It can easily be seen
to be just the graph of a stopping time TO with respect to

(Gt) Since the conditioning property characterizing a

te(0,11"
martingale extends from a pair of deterministic times (u,v) to

a pair of stopping times (U,V), UsV, we see that Mn is a martin-
gale, if, as above, To can be "predicted" by a strictly increas-
ing sequence (Tm)mejN of stopping times. Of course, this need

not necessarily be the case. It is true if and only if To is meas-
urable with respect to the c-algebra of "previsible sets" which

is generated by all continuous adapted processes. "Continuity"
ensures that stopping times in this o-algebra can be predicted.
There is another important o-field in 9x[0,1], in which this is
typically not the case. It is generated by the regular adapted
processes, hence contains the previsible sets and is called

o-algebra of "optional sets". Of course, M and therefore Sn is

optional. And, as is suggested by what has been said above, Mn



is a martingale if Sn is previsible.

Let us return to the problem of compensation of Mn‘ A version
of the decomposition theorem of Doob-Meyer points in the direc-
tion of a possible solution. This theorem which we will refer to
as "projection theorem" is of central importance for our analysis
and states that for any integrable increasing process A there
exists a unique previsible increasing process AP, called its "dual
previsible projection" such that a-aP is a martingale. We may ap-

ply it to the increasing processes Mn’ M of positive resp. nega-

n
tive jumps of M on Sn' Then Cn = ME—ME makes Mn—Cn a martingale.
But to be a good candidate for a compensator, Cn has to be conti-
nuous, too. This need not be true in general. Yet, the above dis-
cussion already indicates what might be crucial for the problem.
According to it, the previsible case is already solved. Assume
now, on the contrary, that Sn intersects any previsible random

set of the same geometric type (i.e. its [0,1]-sections are a.s.
finite) only on a negligible set. In this case, Srl is said to be
"totally inaccessible", and Cn has to be continuous for the fol-
lowing reasons. In consequence of its previsibility and regula-
rity, it is unable to realize the totally inaccessible set Sn

and therefore cannot jump on it. On the other hand, it cannot jump
outside Sn’ since it can be seen without effort that a previsible
martingale of bounded variation, like a hypothetical jump of Mn—Cn
on a previsible set outside Sn’ vanishes. This important obser-
vation indicates how the problem can be attacked in general: par-
tition the optional set of jumps of M by random sets which are

as simple as Sn, but which are either previsible or totally inac-
cessible. Of course, this partition need not coincide with (Sn)nEJN'
We first state more precisely what we mean by "simplicity".

Call an optional random set S in Qx[0,1] simple, if the cardinal-



ities of its [0,1]-sections define an integrable random variable.
The crux of the construction of the desired partition is then

to see how a given simple set (like Sn) can be covered by a se-
quence of pairwise disjoint either previsible or totally inacces-
sible sets. To this end, associate with a given simple set S the
integrable increasing process I (S) which counts the points of S,
i.e. T'(S) (w) at time t is just the cardinality of the intersec-
tion of Sw and [0,t], w€R. Consider its dual previsible projec-
tion T (s)P. Since this process is previsible, its jumps can be
arranged on a countable union of pairwise disjoint simple random
sets (Tn)n€JN which are previsible. Since F(S)—F(S)p is a martin-
gale, the union of the ‘I‘n is already the essential supremum of
previsible simple sets in S and its complement in S totally inac-
cessible. Hence, an analysis of the jumps of the dual previsible
projection of the increasing process associated with a simple

set gives the desired covering sequence.

Assume now a partition (Un)n€]N of the set of jumps of M by
either previsible or totally inaccessible simple sets is given.
Let Mn denote again the jump process of M on Un, Cn its compen-
sator. We know Cn is a continuous process of bounded variation.
In the Hilbert space of square integrable martingales whose norm
is defined by the usual Lz—norm, the martingales Mn-Cn prove to
be pairwise orthogonal due to the pairwise disjointness of the Un.
The orthogonal complement of the sum M° of these compensated jumps
defines a square integrable continuous martingale MC, due to the
continuity of the compensators. This finishes the procedure of
decomposing M by a pure jump martingale M° and a continuous mar-
tingale M.

Given this decomposition, it is not hard to compute the quad-

ratic variation of M. One simply has to compute the quadratic



variations of M° and M and add them: the fact that all compen-

sators are continuous and of bounded variation, hence cannot con-

tribute, and that M€ is continuous, makes the quadratic variations
of the orthogonal parts also "orthogonal". Now the quadratic va-

riation of M° is just the sum of the squares of the jumps of M.

To obtain the quadratic variation of Mc, one may take resort to

a more general version of the theorem of Doob-Meyer than the ab-

ove projection theorem. It states that for any nonnegative sub-

martingale X there exists a unique previsible increasing process

A, also called "dual previsible projection" of X, such that X-A

is a martingale. It applies to (Mc)2 and allows to identify the

dual previsible projection of this process as the quadratic vari-

ation of M©.

To summarize, the procedure of investigating the structure of
square integrable martingales M and their quadratic variations
which has been outlined consists of the following main steps:

1) by application of an appropriate version of the decomposition
theorem of Doob-Meyer (called projection theorem in the case
of increasing processes) find the dual previsible projections
of increasing processes (like T(S) for simple S) and of sub-
martingales (like M2),

2) partition the random set of jumps of M by a sequence (Un)n €W
of either previsible or totally inaccessible simple sets,

3) find the compensators Cn of the jump process Mn of M on Un
and show they are continuous,

4) show that the compensated jump processes Mn-Crl are pairwise
orthogonal, subtract their sum MO from M to obtain the conti-
nuous part,

5) compute the quadratic variations of M® and M® and sum up to

obtain the quadratic variation of M.
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Guided by the above 5 step program we will now give an outline
of an analogous procedure of gradual elimination of jumps and
computation of quadratic variation for two-parameter martingales,
as presented in this book. Of course, the notions and statements
figuring in 1)-5) have to be reinterpreted in a two-parameter
setting. As a usual phenomenon which might be realized rather
soon, the theory hereby becomes essentially more complicated.

For this reason, we emphasize that our "sketch" can be considered
as being of a more than purely introductory character. On one hand,
we felt that at places it might become too tough to read without
offering the reader the opportunity to jump to the details in the
text. We therefore have provided it with hints indicating the num-
bers of corresponding main theorems (T) or propositions (P) of the
text. On the other hand, given that the procedure proposed is not
of a straightforward kind, this outline might be helpful for a
better understanding. It strictly follows the strain of ideas in-
volved in the step-by-step order of 1)-5), not necessarily the
order in which the results are presented in the text and which is
imposed by logical or formal aspects. Whenever the reader looks
for a "red thread" he may jump back to this sketch to regain ori-

entation.

Our analysis starts with a crucial assumption stated first by
Cairoli, Walsh [12] in their pioneering paper and adopted ever
since by most of the authors concerned with this theory. It says
that the information gained in the future of a given time point t
in one direction is independent of the information gained in the

other direction, given what happened up to t. This "conditional
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independence" assumption is vital for what follows. It finds its
most useful interpretation for our purposes in terms of "optional
and previsible (dual) projections". To explain these notions,

let us briefly return to the one-parameter case, where we already
encountered the dual previsible projection of an integrable in-
creasing process. The theorem stating its existence can be viewed
in an alternative way. For a given integrable increasing process
A, let ma denote the measure on the product Qx[0,1] defined by
mA(S) = E(j 1S dAa), S a product measurable set. Then it states
that there is exactly one previsible increasing process aP such

that the integrals of any bounded previsible process with respect

to my and m are the same. An optional version of this theorem
A

says that there is exactly one optional increasing process a°
(the "dual optional projection" of A) such that the integrals of
any bounded optional process with respect to my and mAO coincide.
Finally, the statements of the projection theorems can be duali-
zed. Given a bounded product measurable process X, there is exact-
ly one bounded optional (previsible) process °x (PX) such that

X and °X (X and PX) cannot be distinguished by measures associa-
ted with optional (previsible) integrable increasing processes.
% resp. Px is called "optional" resp. "previsible" projection

of X. Projection theorems and the martingale notion are linked

by the following elementary observation. If X is a bounded random
variable, considered as a process with a trivial time dependence,
and M is a regular version of the martingale generated by taking
conditional expectations of X, then Ox=M, pX=M_, where M_ is the
process of left limits of M. This identification is the starting
point for our study of projections for two-parameter processes.

We first prove that "one-directional" (dual) projections exist



(T(4.1), T(4.2)). More precisely, for a given product measurable
bounded process X on QX[O,1]2 the family of optional (previsible)

projections of the one-parameter processes X in i-direction,

(.,r)
r being the (fixed) parameter of the complementary direction,

can be chosen measurably with respect to the product Gi (Pi) of
the optional (previsible) sets in i-direction with the Borel sets
in the remaining one, called o-algebra of "i-optional" ("i-previ-
sible") sets, i=1,2. A dual statement can be made for integrable

increasing processes A, where "increasing" means that they define

random measures on the Borel sets of [0,1]2 in the usual way.

Y. T Y5 .

The resulting processes tx ( lX) resp. A (A l) are called (du-
al) i-optional (i-previsible) projections. A series of regulari-
ty results (T(6.1), T(6.2)) shows that X inherits regularity pro-

Y. .
perties to its projections tx o *

X) . They in turn imply that any
L log+L—integrable martingale M possesses a version whose trajec-
tories are continuous for approach in the right upper quadrant

and possess limits for approach in the left upper and right lower
quadrants (P(8.2)). Strangely enough, only an additional investi-

gation of a stochastic integral for square integrable martingales

which shows that they can be "stopped" on more complicated random

sets (P(9.3), P(9.4)) reveals that M also possesses limits for the
left lower quadrant (P(9.5)). To sum up, L log+L—integrable mar-—
tingales have "regular" versions (T(9.1)). Once this is established,

it is not hard to link two-parameter projections and martingales
in the same way as above. If X is a bounded random variable, M a

regular version of the martingale generated by taking condition-

YaY Y5Y Ty . Y,T
al expectations of X, then L 2X =M = 2 1X, 1 2X =M - 2 1X

Y, o Y M, L mAT
T2 o _o2h, it 2

M i X =M 1

X (T(10.1)). Here "-" al-
ways means that left limits have to be taken in the respective

direction, for example: M " is the process defined by the left

’
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limits of M in the first direction. This result has very impor-
tant consequences, once it is extended to general bounded product
measurable processes and dualized. It says that it is immaterial
in which order iterated (dual) projections are taken and allows

us to define (dual) previsible (i.e. 1- and 2-previsible, denoted
by Tx resp. A“) projections, 1-previsible, 2-optional projections,
2-previsible, 1-optional projections, and optional (i.e. 1- and
2-optional, denoted by YX, AY) projections by just the product

of two one-directional projections in an arbitrary order (P(10.1)).
Here is what we mean by the most useful interpretation of the
conditional independence assumption: projections and dual projec-
tions in different directions are "independent" of each other,
commute and their compositions define "two-directional" (dual)
projections in an unambiguous way (T(10.2), T(10.3)). Implicitly

we also have accomplished the first half of step 1 of our program.

™
Given an integrable increasing process A, we know that A - A 1

is a martingale in direction 1, whose dual previsible projection

i T, m m m m
is A 2 = A L A 2 . A". Hence A - (A 1 + A ? Aﬂ) is a mar-

tingale in both directions, i.e. a martingale (cor. 1 of T (11.2)).
At this stage, the second half of step 1 is not very difficult

any more. Call an integrable process X submartingale, if it is a
submartingale in the order sense, i.e. if it is a one-parameter
submartingale on every increasing path in [0,1]2, and a weak sub-
martingale, if the increments AJX of X over rectangles J in para-
meter space, conditioned by the information available at their
lower left boundary points, are nonnegative. We concentrate on

the construction of the counterpart of A" for X. The process A"

is the uniquely determined previsible increasing process such that

mA|P =m TT|P, where P = 91092 is the o-algebra of previsible sets

and my defined for integrable increasing B like in the one-para-



