SYSTEM 360/370
JOB CONTROL LANGUAGE
~ AND THE
ACCESS METHODS

REINO HANNULA
T
I _EoRe oy b

C

|




i ol 7861766
REINO HANNULA

California Polytechnic State University, San Luis Obispo

SYSTEM 360/370
JOB CONTROL LANGUAGE
AND THE ACCESS METHODS

A

vv

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts

Menlo Park, California - London - Amsterdam - Don Mills, Ontario - Sydney



Reproduced by Addison-Wesley from camera-ready copy supplied by the
author.

Copyright © 1977 by Addison—Wesléy Publishing Company, Inc. Philippines
copyright 1977 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in
the United States of America. Published simultaneously in Canada.
Library of Congress Catalog Card No. 76-23986

ISBil U-201-02755-0
BCDEFGHIJ-AL-798



i ,
T 9,
i To the computer science students at Cal Poly, past and

present, who have taught me so much. . i




Preface

This work covers thoroughly the Job Control Language of System/360-

370. It is also the only textbook in the field to consider the

System/360-370 access methods -- BDAM, BPAM, BSAM, BISAM, . QSAM, and

QISAM -- in detail. The organization of the text maintains a logical

consistency in that the reader is familiarized with the Job Control

Language repertoire and then introduced to the access method concepts.
The book is divided into five parts:

1. an introduction to the System/360-370 operating system
(Chapter 1) ;

2. an introduction to data sets (Chapter 2);

3. a thorough discussion of Job Control Language (Chapters
3-8);

4. a comprehensive presentation of six access methods (Chapters
9-13) ;

5. an example of a generation data group written in the FORTRAN
Language (Chapter 14).

A special section -- the System Notebook -- provides useful
information about computer science topics which, in some cases, may
be completely familiar to advanced students. Any reader, however,
who is not totally conversant with the subject matter in a System
Notebook topic will find the information extremely useful in his or
her study of Job Control Language and the access methods.

The System Notebook also introduces the student to some very
useful IBM utility programs. The study of these utilities will make
the reader's research in the IBM Utility manual very profitable.

I especially urge the students to study and to run the programs
(or ones similar to it) that are given in Topics 1 and 2 of the
System Notebook (Chapter 5). This ten-job-step program (which one of
my students dubbed as the Big Job Step Job) has been extremely help-
ful in raising the sophistication level of the students in my JCL
classes at California Polytechnic State University. These two topics
are also a simple but very effective introduction to the partitioned
data set organization concept.

I have taught the material presented in this text in the exact
order given by the Table of Contents. An instructor will not face,
however, any difficulties if he or she modifies the order of the
topics to suit his or her own teaching philosophy.



There is sufficient material in this text for a semester's work.
I find that in a ten-week quarter, I must omit either the generation
data group discussion or the Basic Direct Access Method. My prefer-
ence is to omit the latter subject since the students are intrigued
and highly motivated by the discussion of the generation data group.

The students in my classes have had, generally, at least two
high-level language courses (FORTRAN, COBOL, and/or PL/I) and Basic
Assembler Language. These students, not required to take the JCL
course, are usually highly motivated to master the intricacies of Job
Control Language.

This text has been organized so that students with only a high-
level language background can master the Job Control Language pre-
sented and gain greater insight into the access methods. I would,
with such students, avoid a detailed discussion of Chapters 1 and 2.

Note that there are two high-level language appendices -- The
COBOL Appendix and the PL/I Appendix —-- which contain the text's
Assembler Language programs in COBOL and PL/I, respectively. For
example, the COBOL equivalent of the program contained in Figure 9.2
in the text is COBOL 9.2 in the COBOL Appendix. PL/I 2.2 contains
the PL/I equivalent of the same program. There are remarks and
comments in the routines in the appendices which relate the high-
level program with its associated Assembler Language routine in the
text. I owe this novel approach to a suggestion made by Professor
William Davis of Miami University, Ohio, who reviewed my manuscript
for Addison-Wesley.

I note that cards were keypunched for every program in this book
from the camera-ready copy. I ran all the programs -- using these
decks -- on a system 360 computer. Corrections, when necessary, were
made in the camera-ready copy so that I am confident that every
program in this book will execute using the code as given in the
figures.

My greatest debt in this text is to my JCL students who taught
me just about everything I know about Job Control Language and the
Access Methods. I cannot list all of their names so I hope that I am
forgiven if I inadvertently omit the name of some student who should
have been mentioned.

I owe a great debt to Richard Farabaugh, now of IBM, who taught
me a great deal about the Basic Direct Access Method and sundry other
items. A thank you is also due to Wayne Beavers, Paul Popelka, and
Richard Bergquist -- who read IBM manuals as if they were detective
stories -- for their considerable assistance. The very interesting
example of spanned records (data mode) in Figure 4.4 is based on
Richard's suggestion. Paul suggested the inclusion of the short
block retrieval program in Chapter 10 and provided other useful
ideas. Dana Freiburger, an expert on generation data groups, sug-
gested the inclusion of Chapter 14. My special thanks are also due
Marc Lewis, a student in my first Assembler Language class and now
the system programmer in our Computer Center, who developed the first
INIT and PROLOG macros used at our University.

I must also give my thanks to Sidney Abbott, James Sturch,
Kenneth Skewes, Mark Hahn, Gary Nunes, and the other twenty students
in the first JCL class at Cal Poly where we began to unravel the
intricacies of JCL and the access methods.

Tom Locke wrote the COBOL and FORTRAN programs equivalent to
Figure 2.3 and Figures 9.1 through 9.6. Paul Popelka wrote the ISAM



and BDAM PL/I routines. The COBOL ISAM and COBOL BDAM routines were
written by Conard Sill and Donald Payette, respectively. Carolee
Ball did almost all of the keypunching. John Burdett was always
helpful with his knowledge. I commend all of these people for their
excellent work.

This book, however, would not have been possible without Ms.
Meri Kay Gurnee who typed the original manuscript and the camera-
ready material. She also did all but three of the illustrations.’
Her one watchword was "Let's get everything right." I appreciate her
devotion to the task.

I am, of course, solely responsible for any errors that may
appear in the text. I thank the reviewers for their help in removing
those that they noticed.

Finally, I wish to acknowledge my greatest debt which is to my
wife, Alice Beatrice Hannula, who always said "you can." So I did.

vii



Contents

7861766

1 Introduction -- The Operating System

Job Management Routines 2

The Reader/Interpreter 3

MVT and MFT 4

The Initiator/Terminator 8

The Output Writer 10

Task and Recovery Management 12
Data Management Routines 13

The Utility Programs 15

The Linkage Editor 17

el el ol T S Sy
CONOU D WN

The System Notebook

Topic 1 Blocking and Buffering 18

2 An Introduction to Data Sets 22
2.1 The DCB Macro Instruction 22
2.2 Some Data Management Macros 29
2.3 Three QSAM Data Sets 33

The System Notebook

Topic 1 The Various Modes of GET and PUT

3 JCL and the Procedure Library 40
3.1 The Job Control Language Cards 40
3.2 The JCL Card Format 42

3.3 The Cataloged Procedures 47

The System Notebook

Topic 1 The IEBPTPCH Utility 51
Topic 2 Introduction to Disk Pack Storage

ix

it

34

54



4 The Job Statement 58

4.1 The Format of the Job Statement 58
4.2 The Positional Parameters 59
4.3 The Keyword Parameters 60

The System Notebook

Topic 1 The Volume Table of Contents 63
Topic 2 The IEHLIST Utility 68
Topic 3 The IHADCB Dummy Control Section

5 The EXEC Statement 76

The EXEC Card Format 76

The ACCT and DPRTY Parameters 78
The PARM Keyword 80

Retrieving a PARM Value 82

The COND Keyword Parameter 84
COND on the JOB Card 87

Returning a Completion Code 88
TIME, ROLL, and REGION 90

RD and RESTART 94

The JOBLIB and STEPLIB DD Cards 98

HOONOU S wN -

Guuouuou oo o
o

The System Notebook

Topic 1 A Partitioned Data Set -- An
Introduction

10
Topic 2 The Partitioned qéta Set (II) 104

6 The DD Statement (I) 108

1 The DD Card Format 108

2 The Positional Parameters 109

3 Data Set Location (I) UNIT 113

.4 Data Set Location (II) SYSOUT 118

5 Data Set Location (III) VOLUME 119
6 Data Set Location (IV) AFF, SEP 123

7 The DD Statement (II) 125

1l Data Set Status -- DISP 125

2 Data Set Attributes -- DCB 130

.3 Data Set Information (I) DSNAME 134
4 Data Set Information (II) DDNAME 138
5 Data Set Size (I) SPACE 139

6 Data Set Size (II) SPLIT 143

.7 Data Set Size (III) SUBALLOC 145

The System Notebook
Topic 1 Some Special DD Cards 147

70



8

o
ol
HE;

® 0 ®

® @

.4
5

(Ve

O O O

-1
-2
SE]

Cataloged and Instream Procedures 150

An Instream Procedure 150

How to Catalog a Procedure 152

Modifying an Invoked Cataloged Procedure
153

Concatenation of Data Sets 157

Symbolic Parameters 158

The Access Methods (I) QSAM 161

Extending a Sequential Data Set 161
Processing a PDS with QSAM 164
The PUTX Macro 169

10 The Access Methods (II) BSAM 173

101
10.2
10.3
10.4
10.5

!

B0 S0
112

1323
11.4
11.5
1136
Tlesr

Processing with BSAM 173

Processing Short Blocks with BSAM 175
BSAM Retrieves a Short Block 178
Automatic Buffering -- GETBUF 181
BUILD and GETPOOL 185

The Access Methods (III) QISAM, BISAM
191

The Structure of an Indexed Sequential
Data Set 191

The organization of an Indexed Sequential
Data Set 195

The Load Mode 198

Direct Retrieval 203

Direct Insertion 206

Sequential Retrieval, the SETL Macro 209
JCL for Indexed Sequential Data Sets 215

The System Notebook

Topic 1 The SYNAD DCB Keyword 218

12 The Access Methods (IV) BPAM 223

12,1

12.2
12.3
12.4

The Structure of a Partitioned Data
Set 223

The STOW Macro 226

The BLDL Macro 233

The FIND Macro 235

i



13 An Introduction to BDAM 242

13.1
13.2
18533
13.4

14

14.1
14.2
14.3
14.4
14.5

A

Relative Block Addressing 244
The ADD and SORT Routines 246
Direct Retrieval 252

Direct Update 256

Generation Data Group 260

The Generation Index and Model DSCB 262
The First Generation 264

The Baseball Program 268

Creating a New Generation 270
Generation Data Group Retrieval 271

Glossary 277

COBOL Appendix 290

PL/I Appendix 310

Appendix A A List of DCB Keywords 322

Appendix B Ansi Printer Carriage Control
Character 324
Appendix C Some Data Management Macros 325
Appendix D The Macros Local to this text 326
Appendix E sSome Random Access Storage Systems
329

Appendix F The EBCDIC Collating Sequence 330
Appendix G Some Linkage Editor PARM Options

332

Appendix H some Linkage Editor Control

Appendix

Inde

X

Statements 333
Some System Data Sets 335

—

336

xid



Chapter 1

Introduction—
The Operating System

The main purpose of this chapter is to present a general discussion
of the components of the System/360-370 Operating System. We will
emphasize, in this discussion, those elements of the Operating
System which are closely related to the subject matter of this text.

Although this discussion will not be exhaustive, it will suffice
to make the Job Control Language (JCL) we present more meaningful to
the user. We will assume in all later chapters that the reader is
conversant with the material covered here.

Table 1.1 conveniently lists the components of a System/360-370
Operating System. We suggest the reader use this table as a refer-
ence. The starred components are covered in some depth.

Our first subject is the Job Management routines.

TABLE 1.1

The Operating System Components

I. Control program routines
*1. Job Management
2. Task Management
*3. Data Management
4. Recovery Management

II. Processing Programs
1. Language Translators or Compilers

a) Algol

b) Assembler
c) COBOL

d) FORTRAN
e) PL/I

f) RPG

2. Service Programs

a) Utilities

b) Linkage Editor
c) Sort/Merge

d) Emulators
Application Programs
User Programs

*

S w



1AL THE JOB MANAGEMENT ROUTINES

The two main components of the job management routines are the yaster
Scheduler and the Job Scheduler.

Both the computer operator and the Operating System use the
Master Scheduler to communicate with one another; that is, the Master
Scheduler analyzes the commands issued by the operator on the con-
sole and transmits messages from the Operating System to the computer
operator. Commands to the Master Scheduler can also be placed in the
input job stream. These commands have a very high priority and are
passed to the Master Scheduler for execution as soon as they are
encountered.

The Master Scheduler also initiates and terminates the three
main modules of the Job Scheduler -- The Reader/Interpreter, the
Initiator/Terminator, and the Output Writer. Since the Job Scheduler
reads, interprets, and acts on the information provided by the Job
Control Language, each of these modules will be covered in depth.

The Reader/Interpreter is discussed in Section 1.1l. The dis-
cussions of the Initiator/Terminator and the Output Writer are in
Sections 1.4 and 1.5, respectively. Table 1.2 lists the Job Schedu-
ler functions. Note that we have divided the Job Scheduler into its
three main parts in the table.

TABLE 1.2
Functions of the Job Scheduler

Reader/Interpreter

1. Reads and interprets the job control Tanguage

2. Places jobs in the input job queue
Initiator/Terminator

1. Schedules job for execution

2. Allocates I/0 devices for the job

3. Initializes the actual processing of a job

4. Handles the termination of a job
Output Writer

1. Writes all program data on system output devices

There are two types of job schedulers. One is called the
Sequential Scheduler, the other, the Priority Scheduler. The type of
operating system generated at SYSGEN (SYStem GENeration time) deter-
mines which scheduler will be used. If PCP (Primary Control Program)
is generated, then the Sequential Scheduler will be used. Both of
the other OS (Operating System) configurations, MVT (Multiprogramming
with a Varied Number of Tasks) and MFT (Multiprogramming with a Fixed
Number of Tasks), utilize the Priority Scheduler. (We discuss some
differences between MVT and MFT in Section 1.3.)

The main difference between the two schedulers is in how the
Reader/Interpreter routine does its work. The R/I (Reader/Interpre-
ter) of the Sequential Scheduler transfers control to the Initiator/
Terminator after it (the Reader/Terminator) has finished reading the
job control information for each job step. The Reader/Interpreter of
the Priority Scheduler reads the input job stream until it reaches
an end-of-file condition or until it is interrupted by the Operating
System for some other reason.

In a sense the Sequential Scheduler starts the Initiator/



Terminator. Under the MVT and MFT configurations, the Reader/
Interpreter cannot start (transfer control of the CPU to) the Initia-
tor/Terminator. That routine, the I/T, is initially started by a
command issued by the computer operator.

We discuss the Reader/Interpreter of both the Sequential and
Priority Schedulers in some depth in the next section. We do, how-
ever, limit our discussion in subsequent sections to the routines in
the Priority Scheduler.

1.2 THE READER/INTERPRETER

The Reader/Interpreter in the PCP environmentl reads the input stream
(usually the card reader). The job control information is scanned
for syntax errors. If the syntax is correct, then the Reader/
Interpreter places the job control information into the input work
queue called the SYSl.SYSJOBQEZ.

If an error is detected, then the Reader/Interpreter issues a
diagnostic for the erroneous statement. The scanning continues until
the next SYSIN DD * statement is encountered. At that point, the
input stream is flushed until the next EXEC (execute) card is encoun-
tered. And then the scanning begins again. (See Section 6.2 for a
discussion of the SYSIN DD * statement.)

Even if the control statements are correct, the Reader/Interpre-
ter in the PCP configuration will read and interpret the JCL only
until program data or a new job is encountered. 1In either case, the
R/I will transfer control of the computer to the Initiator/Termina-
tor.

The Initiator/Terminator, when it gains control of the CPU, will
perform its functions which includes reading the control information
in the job queue, allocating the external storage devices requested
by the job, and setting up (in main storage) the tables necessary to
execute the job.

The job is executed under the supervision of the Task Management
routines. When the job is terminated control is returned to the
Initiator/Terminator which deactivates the data sets, releases the
storage devices used by the program, and returns control to the
Reader/Interpreter. This cycle repeats until all jobs are executed.

The job control information needed to execute a job> or a job
step” is called a procedure. Since so many jobs and job steps need
quite similar JCL (Job Control Language) and because a slight error
in some small detail (such as a misplaced comma) is so easy to make
many procedures are stored in a system library named SYS1.PROCLIB.
The user can invoke a procedure from this procedure library, or

1
Recall that the Sequential Scheduler is generated for the PCP
environment.

2 : ; )
The SYS1.SYSJOBQE is a data set created at system generation time.
It must reside on a direct access device.

3L c s A
A job is a set of related programs. It might be considered the work
between two JOB cards.

4 : s
A job step is a single task. The amount of work defined between two
EXEC job control cards is a job step.



PROCLIB (as it is sometimes called), by specifying its name on the
EXEC job control card. (See Chapter 5.)

The Reader/Interpreters of both schedulers, Sequential and
Priority, merge the job control information provided by the procedure
library with the JCL provided by the user in the input job stream.
The user may, if he or she wishes, modify the control information in
any procedure that he invokes. This is explained in a later chapter.

We pointed out earlier that, under priority scheduling, the
Reader/Interpreter reads the control information of all the jobs in
the input stream. The jobs are placed into job queues in the
SYS1.SYSJOBQE (Figure 1.1) based on the job's class and priority.

The class and priority are passed to the Reader/Interpreter on the
JOB card.

There are fifteen possible job classes which are usually desig-
nated by the letters A through O~. The jobs are placed into the
designated job queues on a priority basis. These priorities are
numeric values which range from the lowest, 0, to the highest, 13.
The priority determines the order in which jobs in the same class are
loaded into the computer. If two jobs of the same class have the
same priority, then the first job placed into the queue is the first
job to be placed into the computer.

A B c D E
J10 J9 J1z
Jl1 J3 Jé J8 JIBL = s -
J1 J2 J4 J7 J5
FIGURE 1.1

A SYS1.SYSJOBQE with Five Classes

The discussion in the next section, where we consider the MVT
and MFT configurations of 0S, will help clarify the class and prior-
ity concepts. We suggest the student review the above material after
reading Section 1.3.

123 MVT AND MFT

Our subject matter in this section is not directly connected to Job
Control Language. We feel, however, that, if the reader is somewhat
conversant with the basic concepts of both MVT and MFT, a discussion
of JCL will be a little easier to follow.

We suggest, therefore, that this section be read with care. We
do not capsulate our discussion but neither do we provide an exhaus-
tive discussion of these two configurations of 0S. The IBM manuals

lThere is also a HOLD class gpeue which enables a programmer to defer
the execution of his or her program until specified events have
occurred. See discussion of the TYPRUN keyword parameter in

Chapter 4.



MFT Guide and MVT Guidel might be consulted if more information is
desired.

Let us begin our discussion by defining the concept of multi-
programming. Our definition, just as most definitions in computer
science, does not have the precision of mathematical definitions;
however, it is useful and generally acceptable.

An operating system which controls the execution of two or more
concurrent tasks at one time is referred to as a multiprogram-
ming system.

The first question that this definition should raise in our mind
is, "What is a task"? '

IBM, in the manual, Introduction to the Operating System
(GC 28-6534), defines a task simply as work to be accomplished."

We find this definition quite inadequate and suggest therefore
the following: A task is the smallest unit of work that can be per-
formed under the supervision of the control program. We also suggest
that the reader consider a task to be the amount of work defined in
a single job step. Or, alternatively, the amount of work specified
between two EXEC cards.

The number of tasks which may be in memory under MFT (Multipro-
gramming with a Fixed Number of Tasks) is said to be fixed. The
computer memory is divided into partitions. The number of parti-
tions and the size of each partition is determined when the MFT
system is generated at SYSGEN time. However, the computer operator
may change the number of partitions and/or their size, if necessary,
by issuing the DEFINE command.

The nucleus, or control program, resides in the low-order
addresses of memory. The remainder of memory, which is now called
dynamic storage, may contain up to fifteen partitions. (Compare this
to the fifteen classes in the job queue.)

The minimum size for any partition is 8K, the largest may be as
large as the entire area of dynamic storage. 1In the latter case, of
course, it would mean that the MFT system has exactly one partition
dedicated to user programs. Figure 1.2 depicts a division of dynamic
storage into six partitions. Notice the numbering starts from zero.
PO is the first partition and P5 is the sixth.

We said, in the previous section, that the SYS1.SYSJOBQE had
fifteen different job classes designated by the letters 4 to O
inclusive. The letters themselves do not have any intrinsic meaning
but the computer installation may assign attributes to each class.
For example, a computer center may decide that all jobs which require
more than three hours of CPU time will be in class D. A user, whose
job required more than three hours of CPU time, would specify CLASS=D
on his JOB card. (See Section 4.3.)

The computer operator may assign from one to three of these job
classes to any one partition. Since the partitions have dispatching

1
GC 27-6939 and GC 28-6720, respectively.

2 e ; : ; : : :

A partition is a contiguous portion of memory which is dedicated to
storing a single task. The task will be executed under the control
of the Task Management routines.



priority1 -- the priority which determines the order in which each
job gets control of the CPU -- the assignment of classes to the par-
titions assigns, in effect, the dispatching priority to the job
classes.

A partition's dispatching priority is determined by its relative
position in memory. Partition PO has the highest dispatching prior-
ity and Partition P15 has the lowest. Thus, if Class D is assigned
to only Partition P4, all Class D jobs would have a lower priority
with respect to CPU time than jobs in PO, P1, P2, and P3. (See
Figure 1.2.)

Memory

Low-order addresses Control Program

PS5

P4

P3

P2

P1

PO

High-order addresses

FIGURE 1.2

Partitions under MFT

The MFT configuration of the System/360-370 Operating System can
handle three Reader/Interpreters, thirty-six Output Writers, and fif-
teen different user tasks, or job steps at the same time provided the
total does not exceed fifty-two. Very few, if any, computer instal-
lations attain this maximum. The limit reached will be determined
by the available resources in the computer installation.

We will now consider two differences between MFT and MVT.

Figure 1.3 illustrates one of these differences. Note that the

lDo not confuse dispatching priority with the priority of jobs in the
job queue. The priority in the job queue determines the order in
which jobs enter the computer. A job's dispatching priority deter-
mines, with respect to the other jobs already in memory, the order
in which it gains control of the CPU.



