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Preface

Over two centuries ago, L. Euler (1750) derived an ideal model equation de-
scribing the evolution of fluids. Later on, this model was revised under a more
realistic basis by H. Navier (1822) and G. Stokes (1845). Finally, with his
eponymous equation L. Boltzmann (1872) introduced the foundation of Gas
Dynamics. Since then, much progress has been made in the understanding
of these physical models. But many fundamental mathematical questions still
remain unresolved, such as the existence, uniqueness and stability of solutions
to the corresponding equations in three dimensions.

Due to the large number of applications to different fields (such as
meteorology, astrophysics, aeronautics, thermodynamics, lasers and plasma
physics), the study of these model equations from a purely mathematical
point of view plays a crucial role in Applied Mathematics.

The series of lectures contained in this volume reflects five different and
complementary approaches to several fundamental questions arising in the
study of the Fluid Mechanics and Gas Dynamics equations. These lectures
were presented by five well-known mathematicians at the International CIME
Summer School held in Martina Franca, Italy, from 1 to 5 September 2003.

P. Constantin presents the Euler equations of ideal incompressible fluids
and discusses the blow-up problem for the Navier-Stokes equations of viscous
fluids, also describing some of the major mathematical questions of turbulence
theory.

These questions are intimately connected to the Caffarelli-Kohn-Nirenberg
theory of singularities for the incompressible Navier-Stokes equations, that is
explained in detail in G. Gallavotti’s lectures.

A. Kazikhov introduces the reader to the theory of strong approximation
of weak limits via the method of averaging, applied to the Navier-Stokes equa-
tions.

On the other hand, Y. Meyer's lectures focus on several nonlinear evo-
lution equations — in particular the Navier-Stokes ones — and some related
unexpected cancellation properties, that are either imposed on the initial
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condition, or satisfied by the solution itself, whenever it is localized in space
or in time variable.

Finally, S. Ukai presents the asymptotic analysis theory of fluid equa-
tions. More precisely, he discusses the Cauchy-Kovalevskaya technique for the
Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis,
giving the compressible and incompressible limits of the Boltzmann equation,
and the analysis of their initial layers.

Many Ph. D. students and researchers from all over the world attended
the summer school, thereby contributing to its success.

The Apulian landscape with its Romanesque and Baroque cathedrals, cas-
tles, rocky settlements, trullis and caves, and the city of Martina Franca, with
its Ducal Palace — where the lectures were held — contributed to creating an
attractive and pleasant working atmosphere. The summer school would not
have taken place without the contagious optimism of Vincenzo Vespri, the
efficient coordination of Elvira Mascolo and Pietro Zecca and the precious
help of Marco Romito and Veronika Sustik. We would like also to thank here
Carla Dionisi, who took care of the final typesetting of the lectures notes.

Finally, let us remember that the CIME summer school benefited from
the financial support of Ministero degli Affari Esteri — Direzione Generale
per la Promozione e la Cooperazione — Ufhicio V, M.U.R.S.T.; INdAM and
Universita Franco-Italiana.

July 2004 Marco Cannone
Paris, Kanazawa Tetsuro Miyakawa

During the process of proofreading, we learned with sorrow that our col-
league and friend Alexandre V. Kazhikhov, one of the authors of this volume,
passed away on November 3, while at work in his office in Novosibirsk.
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Euler Equations, Navier-Stokes Equations
and Turbulence

Peter Constantin

Department of Mathematics, University of Chicago
5734 University Avenue Chicago, IL 60637, USA
const@math.uchicago.edu

1 Introduction

In 2004 the mathematical world will mark 120 years since the advent of turbu-
lence theory ([80]). In his 1884 paper Reynolds introduced the decomposition
of turbulent flow into mean and fluctuation and derived the equations that de-
scribe the interaction between them. The Reynolds equations are still a riddle.
They are based on the Navier-Stokes equations, which are a still a mystery.
The Navier-Stokes equations are a viscous regularization of the Euler equa-
tions, which are still an enigma. Turbulence is a riddle wrapped in a mystery
inside an enigma ([11]).

Crucial for the determination of the mean in the Reynolds equation are
Reynolds stresses, which are second order moments of fluctuation. The fluctu-
ation requires information about small scales. In order to be able to compute
at high Reynolds numbers, in state-of-the-art engineering practice, these small
scales are replaced by sub-grid models. “Que de choses il faut ignorer pour
‘agir’ | 7 sighed Paul Valéry ([88]). (“How many things must one ignore in
order to ‘act’ ! 7) The effect of small scales on large scales is the riddle in
the Reynolds equations. In 1941 Kolmogorov ([65]) ushered in the idea of
universality of the statistical properties of small scales. This is a statement
about the asymptotics: long time averages, followed by the infinite Reynolds
number limit. This brings us to the mystery in the Navier-Stokes equations:
the infinite time behavior at finite but larger and larger Reynolds numbers.
The small Reynolds number behavior is trivial (or “direct”, to use the words
of Reynolds himself). Ruelle and Takens suggested in 1971 that deterministic
chaos emerges at larger Reynolds numbers ([83]). The route to chaos itself was
suggested to be universal by Feigenbaum ([49]). Foias and Prodi discussed fi-
nite dimensional determinism in the Navier-Stokes equations already in 1967
([55]), four years after the seminal work of Lorenz ([68]). The dynamics have
indeed finite dimensional character if one confines oneself to flows in bounded
regions in two dimensions ([2], [31], [32], [34], [56], [69]). In three dimensions,
however, the long time statistics question is muddied by the blow up problem.
P. Constantin: Euler Equations, Navier-Stokes Equations and Turbulence, LNMCIME 1871.
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2 Peter Constantin

Leray ([67]) showed that there exist global solutions, but such solutions may
develop singularities. Do such singularities exist? And if they do, are they
relevant to turbulence? The velocities observed in turbulent flows on Earth
are bounded. If one accepts this as a physical assumption, then, invoking clas-
sical results of Serrin ([84]), one concludes that Navier-Stokes singularities, if
they exist at all, are not relevant to turbulence. The experimental evidence, so
far, is of a strictly positive energy dissipation rate 0 < e = (v|Vu|?), at high
Reynolds numbers. This is consistent with large gradients of velocity. The gra-
dients of velocity intensify in vortical activity. This activity consists of three
mechanisms: stretching, folding and reconnection of vortices. The stretching
and folding are inviscid mechanisms, associated with the underlying incom-
pressible Euler equations. The reconnection is the change of topology of the
vortex field, and it is not allowed in smooth solutions of the Euler equations.
This brings us to the enigma of the Euler equations, and it is here where it is
fit we start.

2 Euler Equations

The Euler equations of incompressible fluid mechanics present some of the
most serious challenges for the analyst. The equations are

Diu+Vp =0 (2.1)

with V - u = 0. The function u = wu(z,t) is the velocity of an ideal fluid
at the point z in space at the moment ¢ in time. The fluid is assumed to
have unit density. The velocity is a three-component vector, and z lies in
three dimensional Euclidean space. The requirement that V - u = 0 reflects
the incompressibility of the fluid. The material derivative (or time derivative
along particle trajectories) associated to the velocity u is

Dt = Dg (U, V) = 6), +u-V. (22)

The acceleration of a particle passing through = at time ¢ is D;u. The Euler
equations are an expression of Newton’s second law, F' = ma, in the form
—Vp = Dyu. Thus, the only forces present in the ideal incompressible Euler
equations are the internal forces at work keeping the fluid incompressible.
These forces are not local: the pressure obeys

“Ap=V-(u-Vu)="Tr {(V'u)z} = 0,0; () .

If one knows the behavior of the pressure at boundaries then the pressure
satisfies a nonlocal functional relation of the type p = F([u®u]). For instance,
in the whole space, and with decaying boundary conditions

pP= RiRj(u,-uj)
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where R; = 9;(—A)~ 2 are Riesz transforms. (We always sum repeated indices.
unless we specify otherwise. The pressure is defined up to a time dependent
constant; in the expression above we have made a choice of zero average
pressure. )

Differentiating the Euler equations one obtains:

DU+ U? +Tr{(R® R)U*} =0

where U = (Vu) is the matrix of derivatives. We used the specific expression
for p written above for the whole space with decaying boundary conditions.
This equation is quadratic and it suggests the possibly of singularities in finitc
time, by analogy with the ODE %U + U? = 0. In fact, the distorted Euler
equation
QU +U*+Tr{(R®R)U*} =0

does indeed blow up ([15]). The incompressibility constraint TrU = 0 is re-
spected by the distorted Euler equation. However, the difference between the
Eulerian time derivative 0; and the Lagrangian time derivative D, is signifi-
cant. One may ask whether true solutions of the Euler equations do blow up.
The answer is yes, if one allows the solutions to have infinite kinetic energy.
We will give an example in Section Three. The blow up is likely due to the
infinite supply of energy, coming from infinity. The physical question of finitc
time local blow up is different, and perhaps even has a different answer.

In order to analyze nonlinear PDEs with physical significance one must
take advantage of the basic invariances and conservation laws associated to
the equation. When properly understood, the reasons behind the conservation
laws show the way to useful cancellations.

Smooth solutions of the Euler equations conserve total kinetic energy.
helicity and circulation. The total kinetic energy is proportional to the L?
norm of velocity. This is conserved for smooth flows. The Onsager conjecture
([72], [48]) states that this conservation occurs if and only if the solutions
are smoother than the velocities supporting the Kolmogorov theory, (Holder
continuous of exponent 1/3). The “if” part was proved ([28]). The “only if”
part is difficult: there is no known notion of weak solutions dissipating energy
but with Holder continuous velocities. The work of Robert ([81]) and weak
formulations of Brenier and of Shnirelman are relevant to this question ([85].
[6)).

In order to describe the helicity and circulation we need to talk about
vorticity and about particle paths. The Euler equations are formally equivalent
to the requirement that two first order differential operators commute:

[Dr, Q] = O

The first operator D; = 0; + u - V is the material derivative associated to the
trajectories of u. The second operator

2 =w(x.t)-V
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is differentiation along vortex lines, the lines tangent to the vorticity field w.
The commutation means that vortex lines are carried by the flow of u, and is
equivalent to the equation

Dyw =w - Vu. (2.3)

This is a quadratic equation because w and u are related, w = V x u. If
boundary conditions for the divergence-free w are known (periodic or decay
at infinity cases) then one can use the Biot-Savart law

u=Kspp*rw=Vx(-A)w (2.4)

coupled with (2.3) as an equivalent formulation of the Euler equations, the
vorticity formulation used in the numerical vortex methods of Chorin ([13],
[14]). The helicity is

h=u-w.

The Lagrangian particle maps are
a— X(a,t), X(a,0)=a.
For fixed a, the trajectories of u obey

dXx
— =u(X,t).
a = U
The incompressibility condition implies

det (V,X) = 1.

The Euler equations can be described ([63], [1]) formally as Euler-Lagrange
equations resulting from the stationarity of the action

b
/ /|u(m,t)|2 dxdt

u(z,t) = %—):(A(x, t),t)

and with fixed end values at t = a, b and

with

Alz,t) = X (z,¢).

Helicity integrals ([71])

/ h(z,t)dx = ¢
-

are constants of motion, for any vortex tube 7" (a time evolving region whose
boundary is at each point parallel to the vorticity, w - N = 0 where N is the
normal to 9T at x € OT.) The constants ¢ have to do with the topological
complexity of the flow.
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Davydov, and Zakharov and Kuznetsov ([42], [93]) have formulated the
incompressible Euler equations as a Hamiltonian system in infinite dimensions
in Clebsch variables. These are a pair of active scalars 6, ¢ which are constant
on particle paths,

Dt(p = D,@ =0

and also determine the velocity via

dp(z,t)  On(z,t)
ox; oxr;

u'(x,t) = 0(x,t)

The helicity constants vanish identically for flows which admit a Clebsch vari-
ables representation. Indeed, for such flows the helicity is the divergence of a
field that is parallel to the vorticity h = —V - (nw). This implies that not all
flows admit a Clebsch variables representation. But if one uses more variables,
then one can represent all flows. This is done using the Weber formula ([90])
which we derive briefly below.
In Lagrangian variables the Euler equations are
0%X(a,t) op(X(a,t),t)

= — . 2:5
02t oz, o

Multiplying this by % we obtain

X7 (a,t) 0X7(a,t)  Ip(a,t)

ot? Oa; oa;

where p(a,t) = p(X(a,t),t). Forcing out a time derivative in the left-hand
side we obtain

9 0X7(a,t) 0X(a,t) __(')(j(a,t)
ot ot 8ai N Oai

with
2

Bt ) = Hlm 8 = = ‘M

2 ot

Integrating in time, fixing the label a we obtain:

00X (a,t) 8XAJ(a,t) _ ufo)(a) B 6ﬁ‘(a,t)
ot oa; Oa;
with ,
n(a,t) = /0 q(a, s)ds
where
u((,)(a) = %

is the initial velocity. We have thus:
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(VaX)*('?LX = U(())(a) - Vaﬁ.

where we denote M* the transpose of the matrix M.
Multiplying by [(V.X(a,t))"] ~! and reading at a = A(z,t) with

Az, t) = X Yz, t)

we obtain the Weber formula

o) = (vl Ao, ) ) - D,

This relationship, together with boundary conditions and the divergence-free
requirement can be written as

u=WI[A,v] =P{(VA)"v} (2.6)

where P is the corresponding projector on divergence-free functions and v is
the virtual velocity
v = g o A.

We will consider the cases of periodic boundary conditions or whole space.
Then
P=I+R®R

holds, with R the Riesz transforms. This procedure turns A into an active
scalar system

Dt,A == 0,
Dy =0, (2.7)
u= W[A,v].

Active scalars ([17]) are solutions of the passive scalar equation D0 = 0
which determine the velocity through a time independent, possibly non-local
equation of state u = U[6)].

Conversely, and quite generally: Start with two families of labels and vir-

tual velocities
A=Az, t,\), v(z,t,N\)

depending on a parameter A such that
DtA = D(l' =0

with D; = 0; + u - V,. Assume that u can be reconstructed from A, v via a
generalized Weber formula

u(x,t) = /VJ.A(I.I‘./\)I'(.I‘. t,\)dp(N) — Van

with some function n, and some measure dy.. Then u solves the Euler equations
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15
a—?%—u-Vu%—Vw:O

where ]
= ny?’L + §|U|2

Indeed, using the kinematic commutation relation
DV f =VoDif — (Veu)*' Vi f

and differentiating the generalized Weber formula we obtain:

Diu = Dt(/VTAvdu —V.n) =
- /((Vmu)*VIA)vdu — Vo(Din) + (Vau)"'Vn =

~9.(Dim) = (V)" | [(F2Ayod~ V. =

—V.(Din) — (Veu)'u = =V, (7).

The circulation is the loop integral

Cvzf-uwix
¥

and the conservation of circulation is the statement that

d
7Cw =0

for all loops carried by the flow. This follows from the Weber formula because

) ()XJ i on a,t
w (X0, 1)) Gy = Uiorl@) - ()(a -

The important thing here is that the right hand side is the sum of a time inde-
pendent function of labels and a label gradient. Viceversa, the above formula
follows from the conservation of circulation. The Weber formula is equivalent
thus to the conservation of circulation.

Differentiating the Weber formula, one obtains

ou' 0A 0A
— =P | Det | —; =—; A .
I 'k< ‘ [31‘4 ralCl )D

Here we used the notation

W) = V x U(p)-
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Taking the antisymmetric part one obtains the Cauchy formula:

1 0A 0A
w; = Qﬁijk (Det ['a—g, 55;“1(0)(14)])

which we write as

w=C[VA,(] (2.8)
with ¢ the Cauchy invariant

((z,t) = w(o) 0 A.
Therefore the active scalar system

DtA = 0,
D¢ =0, (2.9)
u="Vx(-A)"1(C[VA,(])

is an equivalent formulation of the Euler equations, in terms of the Cauchy in-
variant (. The purely Lagrangian formulation (2.5) of the Euler equations is in
phrased in terms of independent label variables (or ideal markers) a, t, except
that the pressure is obtained by solving a Poisson equation in Eulerian inde-
pendent variables x,t. The rest of PDE formulations of the Euler equations
described above were: the Eulerian velocity formulation (2.1), the Eulerian
vorticity formulation (2.3), the Eulerian-Lagrangian virtual velocity formula-
tion (2.7) and the Eulerian-Lagrangian Cauchy invariant formulation (2.9).
The Eulerian-Lagrangian equations are written in Eulerian coordinates z,t,
in what physicists call “laboratory frame”. The physical meaning of the de-
pendent variables is Lagrangian.

The classical local existence results for Euler equations can be proved in
either purely Lagrangian formulation ([45]), in Eulerian formulation ([70]) or
in Eulerian-Lagrangian formulation ([19]). For instance one has

Theorem 2.1. ([19]) Let a > 0, and let ug be a divergence free C** periodic
function of three variables. There exists a time interval [0,T] and a unique
C([0,T]); C**) spatially periodic function ¢(x,t) such that

A(z,t) = x + €(x,t)

solves the active scalar system formulation of the Euler equations,

%—f+1L'VA:0,

u="P{(VA(z,1)) uo(A(x, 1))}

with initial datum A(z,0) = z.
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A similar result holds in the whole space, with decay requirements for the
vorticity. As an application, let us consider rotating three dimensional incom-
pressible Euler equations

Ou+u-Vu+ Vr + 202e3 x u = 0.
The Weber formula for relative velocity is:
u(z,t) =P, A" (x,t)uy' (A(x, t),1))

+0P {(Z; Az, t),0; A(z,t)) — (Z;15€5) } -

Here (2 is the constant angular velocity (not w -V ), and e; form the canon-
ical basis of R*. We consider the Lagrangian paths X (a,t) associated to the
relative velocity u, and their inverses A(x,t) = X ~!(x,t), obeying

(Or+u-V)A=0.

As a consequence of the Cauchy formula for the total vorticity w + 262e3 one
can prove that the direct Lagrangian displacement

AMa,t) = X(a,t) —a

obeys a time independent differential equation. The Cauchy formula for the
total vorticity (the vorticity in a non-rotating frame) follows from differen-
tiation of the Weber formula above and is the same as in the non-rotating
case

w + 2.(2(’3 = C[VA. C + 2(2(’;]
Composing with X the right hand side is

C[VAC + 20(‘3] oX = (u}(()) + 20(’3) . V,,X.
Rearranging the Cauchy formula we obtain
‘ 1
OazA(a,t) + 5.00((1)51)(“) -VaA(a,t) =

1

=3 (pe(a)é(a,t) — po(a)é(a,0))
where (X (a.1).0)
w a,t),t
pe(a) = 0
is the local Rossby number and & = !—:j— is the unit vector of relative vortic-

ity direction. This fact explains directly (9,,A = O(p)) the fact that strong
rotation inhibits vertical transport ([24]). In particular, one can prove rather
easily



