COURSE

TECHNOLOGY
BRI o R R

THOMSON LEARNING

Programming Logic and Design

SECOND EDITION

Joyce Farrell

COMPREHENSIVE

Programming Logic and
Design, Comprehensive,
Second Edition

Joyce Farrell
University of Wisconsin
Stevens Point

COURSE
TECHNOLOGY

4‘*

THOMSON LEARNING

COURSE
TECHNOLOGY

—— -

THOMSON LEARNING

Programming Logic and Design, Comprehensive, Second Edition

By Joyce Farrell

Product Manager:
Tricia Boyle
Managing Editor:
Jennifer Locke
Senior Editor:
Jennifer Muroff

COPYRIGHT © 2002 Course Technology,
a division of Thomson Learning, Inc.
Thomson Learning™ is a trademark
used herein under license.

Printed in Canada

23456789 WC 040302
For more information, contact Course
Technology, 25 Thomson Place, Boston,

Massachusetts, 02210.

Or find us on the World Wide Web at:
Www.course.com

Development Editor:
Lisa Ruffolo

Editorial Assistant:
Janet Aras

Production Editor:
Karen Jacot

ALL RIGHTS RESERVED. No part of this
work covered by the copyright hereon
may be reproduced or used in any form
or by any means—graphic, electronic, or
mechanical, including photocopying,
recording, taping, Web distribution, or
information storage and retrieval
systems—without the written
permission of the publisher.

For permission to use material from this
text or product, contact us by

Tel (800) 730-2214

Fax (800) 730-2215
www.thomsonrights.com

Cover Designer:
Betsy Young

Compaositor:
GEX Publishing Services

Manufacturing Coordinator:
Alexander Schall

Disclaimer

Course Technology reserves the right to
revise this publication and make
changes from time to time in its conten
without notice.

15BN 0-619-06315-7

Preface

Progmmming Logic and Design, Comprehensive, Second Edition, provides the beginning
programmer with a guide to developing structured program logic. This textbook assumes
that students have no programming language experience. The writing is nontechnical and
emphasizes good programming practices. The examples are business examples; they do not
assume mathematical background beyond high school business math. Additionally, the exam-
ples illustrate one or two major points; they do not contain so many features that students
become lost following irrelevant and extraneous details.

The examples in Programming Logic and Design, Comprehensive, Second Edition, have been created
to provide students with a sound background in logic no matter what programming languages
they might eventually use to write programs. This book can be used in a stand-alone logic
course that students take as a prerequisite to a programming course, or as a companion book
to an introductory programming text using any programming language.

ORGANIZATION AND COVERAGE

Programming Logic and Design, Comprehensive, Second Edition, introduces students to
programming concepts, enforcing good style and logical thinking. General programming
concepts are introduced in Chapter 1. Chapter 2 discusses the key concepts of structure
including what structure is, how to recognize it, and, most importantly, the advantages to
writing structured programs. Chapter 3 extends the information on structured programming
to the area of modules. By Chapter 4 students can write complete, structured business programs.
Chapters 5 and 6 explore the intricacies of decision making and looping. Students learn to
develop sophisticated programs that use control breaks and arrays in Chapters 7 and 8.

In Chapter 9 students use arrays in more sophisticated ways by exploring sorting techniques.
Chapter 10 focuses on the special issues involved in writing interactive programs that allow
users to make menu selections from both single- and multiple-level menus. Chapter 11 covers
the intricacies of sequential file merging, matching, and updating. In Chapter 12, students learn
valuable modularization techniques, including the differences between local and global
variables and how to pass variables to and from modules. Chapter 12 also provides clear
explanations of the sometimes confusing terminology associated with object-oriented
programming. In Chapter 13, students learn the vocabulary associated with event-driven
programming and how to incorporate GUI objects into programs. Chapter 14 brings
together all the concepts that students have learned so far by addressing issues of good

xii

Programming Logic and Design, Comprehensive, Second Edition

program design—including reducing coupling and increasing cohesion. Chapter 15 provides
an introduction to UML, a powerful graphic tool for designing object-oriented systems.

Programming Logic and Design, Comprehensive, Second Edition, combines text explanation with
flowcharts and pseudocode examples to provide students with alternative means of expressing
structured logic. Numerous detailed, full-program exercises at the end of each section illustrate
the concepts explained within the section and reinforce students’ understanding and retention
of the material presented.

Programming Logic and Design, Comprehensive, Second Edition, distinguishes itself from other
programming logic language books in the following ways:
» [t is written and designed to be non-language specific. The logic used in this book can
be applied to any programming language.

m The examples are everyday business examples; no special knowledge of mathematics,
accounting, or other disciplines is assumed.

m The concept of structure is covered earlier than in many other texts. Students are exposed
to structure naturally, so they will automatically create properly designed programs.

» Text explanation is interspersed with both flowcharts and pseudocode so students can
become comfortable with both logic development tools and understand their
interrelationship.

n Complex programs are built through the use of complete business examples. Students
see how an application is built from start to finish instead of studying only segments
of programs.Students learn the difference between local and global variables, and how
to pass their values to and from modules.

m Object-oriented terminology is thoroughly explained. This feature is absent from
many other programming logic books.

» Event-driven GUI programs are presented. Students enjoy working with the graphical
objects. Few texts explore the logic behind them.

w Students gain an appreciation for good program design, and learn to recognize poor design.

w Students learn about UML, a powerful object-oriented design tool.

FEATURES

New to this edition of the text is the use of camel casing for naming variables and methods,
and the addition of parentheses to method names. These improvements expose students to
variable and method names that closely resemble those they will be most likely to use in
introductory programming classes in C++, Java, Visual Basic or Pascal. To improve students’
comprehension of the decision-making process, endif has been added to the pseudocode in
all decision examples. Additional end-of-chapter exercises are included so students have more
opportunities to practice concepts as they learn them.

Preface xiii

Programming Logic and Design, Comprehensive, Second Edition, is a superior textbook because it
also includes the following features:

m Objectives Each chapter begins with a list of objectives so the student knows the
topics that will be presented in the chapter. In addition to providing a quick reference
to topics covered, this feature provides a useful study aid.

m Tips These notes provide additional information—for example, an alternative method
of performing a procedure, another term for a concept, background information on a
technique, or a common error to watch out for.

Summaries Following each section is a summary that recaps the programming
concepts and techniques covered in the section. This feature provides a concise means
tor the student to recap and check understanding of each chapter's main points.

s Exercises Each chapter section concludes with meaningful programming exercises
that provide students with additional practice of the skills and concepts they learned
in the lesson. These exercises increase in difficulty and are designed to allow students
to explore logical programming concepts,

TEACHING ToOOLS

The following supplemental materials are available when this book is used in a classroom
setting. All of the teaching tools available with this book are provided to the instructor on a
single CD-ROM.

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this textbook
includes:

» Additional instructional material to assist in class preparation, including suggestions for
lecture topics.

= Solutions to all end-of-chapter materials.

ExamView®. This textbook is accompanied by ExamView, a powerful testing software
package that allows instructors to create and administer printed, computer (LAN-based), and
Internet exams. ExamView includes hundreds of questions that correspond to the topics
covered in this text, enabling students to generate detailed study guides that include page
references for further review. The computer-based and Internet testing components allow
students to take exams at their computers, and also save the instructor time by grading each
exam automatically.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each
chapter. These are included as a teaching aid for classroom presentation, to make available to
students on the network for chapter review, or to be printed for classroom distribution.
Instructors can add their own slides for additional topics they introduce to the class.

Xiv

Programming Logic and Design, Comprehensive, Second Edition

Solution Files. Solutions to end-of chapter exercises are provided on the Teaching Tools
CD-ROM and may also be found on the Course Technology Web site at www.course.com.
The solutions are password protected.

Distance Learning. Course Technology is proud to present online courses in WebCT and
Blackboard, as well as at MyCourse.com, Course Technology’s own course enhancement tool,
to provide the most complete and dynamic learning experience possible. When you add
online content to one of your courses, you're adding a lot: self tests, links, glossaries, and, most
of all, a gateway to the 21st century’s most important information resource. We hope you will
make the most of your course, both online and offline. For more information on how to bring
distance learning to your course, contact your local Course Technology sales representative.

ACKNOWLEDGMENTS

I would like to thank all of the people who helped to make this book a reality, especially Lisa
Ruffolo, Development Editor, whose hard work, attention to detail, and perceptive appreciation
for the methodology required to teach this subject matter have made this a quality textbook.
Thanks also to Kristen Duerr, Vice President and Publisher; Tricia Boyle, Product Manager;
Jennifer Locke, Managing Editor; Jennifer Muroff, Senior Editor; Margarita Donovan, Senior
Product Manager; Karen Jacot, Production Editor; Janet Aras, Editorial Assistant; and Beverly
Jackson, Quality Assurance Tester. | am grateful to be able to work with so many fine people
who are dedicated to producing quality instructional materials.

[am grateful to the many reviewers who provided helpful and insightful comments during
the development of this revision, including R. Scott Cost, University of Maryland at
Catonsville; Bob Husson, Craven Community College; Cathleen Kennedy, College of San
Mateo: Marilyn D. Moore, Morehead State University; George Novotny, Ferris State
University; Steve Prettyman, Chattahoochee Technical Institute; and Pamela Silvers,
Asheville-Buncombe Technical Community College.

Thanks, too, to my husband, Geoff, who acts as friend and advisor in the book-writing
process. This book, as was its previous edition, is dedicated to him and to my daughters,
Andrea and Audrey.

Joyce Farrell

Preface xiii

Programming Logic and Design, Comprehensive, Second Edition, is a superior textbook because it
also includes the following features:

s Objectives Each chapter begins with a list of objectives so the student knows the
topics that will be presented in the chapter. In addition to providing a quick reference
to topics covered, this feature provides a useful study aid.

» Tips These notes provide additional information—for example, an alternative method
of performing a procedure, another term for a concept, background information on a
technique, or a common error to watch out for.

s Summaries Following each section is a summary that recaps the programming
concepts and techniques covered in the section. This feature provides a concise means
for the student to recap and check understanding of each chapter's main points.

s Exercises Each chapter section concludes with meaningful programming exercises
that provide students with additional practice of the skills and concepts they learned
in the lesson. These exercises increase in difficulty and are designed to allow students
to explore logical programming concepts.

TEACHING TooOLS

The following supplemental materials are available when this book is used in a classroom
setting. All of the teaching tools available with this book are provided to the instructor on a
single CD-ROM.

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this textbook
includes:

» Additional instructional material to assist in class preparation, including suggestions for
lecture topics.

» Solutions to all end-of-chapter materials.

ExamView®. This textbook is accompanied by ExamView, a powerful testing software
package that allows instructors to create and administer printed, computer (LAN-based), and
Internet exams. ExamView includes hundreds of questions that correspond to the topics
covered in this text, enabling students to generate detailed study guides that include page
references for further review. The computer-based and Internet testing components allow
students to take exams at their computers, and also save the instructor time by grading each
exam automatically.

PowerPoint Presentations. This book comes with Microsoft PowerPoint shides for each
chapter. These are included as a teaching aid for classroom presentation, to make available to
students on the network for chapter review, or to be printed for classroom distribution.
Instructors can add their own slides for additional topics they introduce to the class.

—
BRIEF

Contents

PREFACE

CHAPTER ONE
An Overview of Computers and Logic

CHAPTER TWO

Understanding Structure

CHAPTER THREE

Modules, Hierarchy Charts, and Documentation

CHAPTER FOUR
Writing a Complete Program

CHAPTER FIVE
Making Decisions

CHAPTER SIX
Looping

CHAPTER SEVEN
Control Breaks

CHAPTER EIGHT
Arrays

CHAPTER NINE
Advanced Array Manipulation

CHAPTER TEN
Using Menus and Validating Input

CHAPTER ELEVEN
Sequential File Merging, Matching, and Updating

CHAPTER TWELVE
Advanced Modularization Techniques and
Object-Oriented Programming

CHAPTER THIRTEEN
Programming Graphical User Interfaces

CHAPTER FOURTEEN
Program Design

CHAPTER FIFTEEN
System Modeling With UML

APPENDIX A
A Difficult Structuring Problem

APPENDIX B
Using a Large Decision Table

INDEX

xi

29

61

21

111

149

177

209

247

279

311

343

371

391

411

B-1
I-1

Contents

PREFACE xi

CHAPTER ONE

An Overview of Computers and Logic 1
Understanding Computer Components and Operations 1
Understanding the Programming Process 5

Understand the Problem 5
Plan the Logic 6
Code the Program 7
Translate the Program into Machine Language 7
Test the Program 3
Put the Program into Production 9
Understanding the Data Hierarchy 9
Using Flowchart Symbols and Pseudocode Statements 11
Using and Naming Variables 15
Ending a Program by Using Sentinel Values 17
Using the Connector 19
Assigning Values to Variables 20
Understanding Data Types 22
Chapter Summary 23
Exercises 24

CHAPTER TWO

Understanding Structure 29
Understanding Unstructured Spaghetti Code 29
Understanding the Three Basic Structures 31
Using the Priming Read 38
Understanding the Reasons for Structure 42
R ecognizing Structure 44
Two Special Structures—Case and Do Until 49

The Case Structure 49
The Do Unul Loop 52
Chapter Summary 54
Exercises 55

CHAPTER THREE

Modules, Hierarchy Charts, and Documentation 61
Modules, Subroutines, Procedures, Functions, or Methods 61

Modularization Provides Abstraction 62
Modularization Allows Multiple Programmers to Work on a Problem 62
Modularization Allows You to Reuse Your Work 63
Modularizaton Makes It Easier to Identify Structures 63
Modularizing a Program 66

Modules Calling Other Modules 69

vi Programming Logic and Design, Comprehensive, Second Edition

Declaring Variables

Creating Hierarchy Charts
Understanding Documentation
Output Documentation

Input Documentation
Completing the Documentation
Chapter Summary

Exercises

CHAPTER FOUR

Writing a Complete Program
Understanding the Mainline Logical Flow Through a Program
Housckeeping Tasks

Declaring Variables
Opening Files
Printing Headings
Reading the First Input Record
Writing the Main Loop
Performing End-Of-Job Tasks
Chapter Summary
Exercises

CHAPTER FIVE

Making Decisions
Evaluating Boolean Expressions to Make Comparisons
Using the Logical Comparison Operators
Understanding AND Logic
Writing AND Decisions for Efficiency
Combining Decisions in an AND Situation
Avoiding Common Errors in an AND Situation
Understanding OR Logic
Avoiding Common Errors in an OR Situation
Writing OR Decisions for Efficiency
Combining Decisions in an OR Situation
Using Selections within Ranges
Common Errors Using Range Checks
Using Decision Tables
Chapter Summary
Exercises

CHAPTER SIX
Looping
Understanding the Advantages of Looping
Using a While Loop with a Loop Control Variable
Using a Counter to Control Looping
Looping with a Variable Sentinel Value
Looping by Decrementing
Avoiding Common Loop Mistakes
Using the For Loop
Using the Do Until Loop
Recognizing the Characteristics Shared by All Loops
Nesting Loops

91
91
94
94
99

100

100

104

107

107

108

111
111
114
118
122
124
125
127
129
130
131
132
133
135
142
143

149
149
150
152
156
158
159
161
163
165
166

Table of Contents vii

Using a Loop to Accumulate Totals 168
Chapter Summary 172
Exercises 173

CHAPTER SEVEN

Control Breaks 177
Understanding Control Break Logic 177
Performing Single-Level Control Breaks 178
Using Control Data Within the Control Break Module 184
Performing Control Breaks with Totals 189
Performing Multiple-Level Control Breaks 194
Performing Page Breaks 202
Chapter Summary 205
Exercises 206

CHAPTER EIGHT

Arrays 209
Understanding Arrays 209
How Arrays Occupy Computer Memory 210
Manipulating an Array to Replace Using Nested Decisions 211
Array Declaration and Initialization 221
Run-Time and Compile-Time Arrays 223
Loading an Array from a File 226
Searching for an Exact Match in an Array 228
Using Parallel Arrays 230
Remaining within Array Bounds 233
Improving Search Efficiency using an Early Exit 235
Searching an Array for a Range Match 237
Chapter Summary 240
Exercises 241

CHAPTER NINE

Advanced Array Manipulation 247
Understanding the Need for Sorting Records 247
Understanding How to Swap Two Values 248
Using a Bubble Sort 250
Refining the Bubble Sort by Using a Variable for the Array Size 258
Refining the Bubble Sort by Reducing Unnecessary Comparisons 262
Refining the Bubble Sort by Eliminating Unnecessary Passes Through the List 263
Using an Insertion Sort 265
Using a Selection Sort 266
Using Indexed Files 268
Using Linked Lists 269
Using Multidimensional Arrays 271
Chapter Summary 275
Exercises 276

CHAPTER TEN

Using Menus and Validating Input 279
Using Interactive Programs 279
Using a Single-Level Menu 281

viii

Programming Logic and Design, Comprehensive, Second Edition

Coding Modules as Black Boxes
Making Improvements to a Menu Program
Using the Case Structure to Manage a Menu
Using Multilevel Menus
Validating Input
Understanding Types of Data Validation
Validating a Data Type
Validating a Data Range
Validating Reasonableness and Consistency of Data
Validating Presence of Data
Chapter Summary
Exercises

CHAPTER ELEVEN

Sequential File Merging, Matching and Updating
Understanding Sequential Data Files and the Need for Merging Files
Creating the Mainline and Housekeeping() Logic for a Merge Program
Creating the mainLoop() and finishUp() Modules for a Merge Program
Modifying the housekeeping() Module to Check for eof
Master and Transaction File Processing
Matching Files to Update Fields in Master File Records
Allowing Multiple Transactions for a Single Master File Record
Updating Records in Sequential Files
Chapter Summary
Exercises

CHAPTER TWELVE
Advanced Modularization Techniques
and Object-Oriented Programming

Understanding the Principles of Modularization and Abstraction in Procedural Programs

Passing Variables to Modules

Returning a Value from a Module

Using an IPO Chart

Understanding the Advantages of Encapsulation
An Overview of Object-Oriented Programming
Detining Classes

Instantiating and Using Objects

Understanding Inheritance

Understanding Polymorphism

The Advantages of Object-Oriented Programming
Chapter Summary

Exercises

CHAPTER THIRTEEN

Programming Graphical User Interfaces
Understanding Event-Driven Programming
User-Initiated Actions and GUI Components
Designing Graphical User Interfaces
The Interface Should Be Natural and Predictable
The Interface Should Be Attractive, Easy to Read, and Nondistracting

To Some Extent, It’s Helpful If The User Can Customize Your Applications

The Program Should Be Forgiving

285
289
293
296
301
303
304
304
305
305
306
307

311
311
313
316
321
323
324
323
329
338
339

343
343
348
352
354
354
356
358
360
361
363
366
366
367

371
371
373
375
375
375
376
376

The GUI Is Only a Means to an End
Madifying the Attributes of GUI Components
The Steps to Developing an Event-Driven Application
Understanding the Problem
Creating Storyboards
Defining the Objects in an Object Dictionary
Defining the Connections Between the User Screens
Planning the Logic
Objert-Oriented Error Handling: Throwing Exceptions
Chapter Summary
Exercises

CHAPTER FOURTEEN

Program Design
Understanding the Need for Good Program Design
Storing Program Components in Separate Files
Selecting Variables and Module Names
Designing Module Statements
Avoid Confusing Line Breaks
Use Temporary Variables to Clarify Long Statements
Use Constants where Appropriate
Organizing Modules
Reducing Coupling
Increasing Cohesion
Functional Cohesion
Sequential Cohesion
Conununicational Cohesion
Temporal, Procedural, Logical, and Coincidental Cohesion
Maintaining Good Programming Habits
Chapter Summary
Exercises

CHAPTER FIFTEEN
System Modeling With UML

Understanding the Need for System Modeling
What is UML?

Using Use Case Diagrains

Using Class and Object Diagrams

Using Sequence and Collaboration 1)iagrams
Using Statechart Diagrams

Using Activity Diagrams

Using Component and Deployment Piagrams
Deciding which UML Diagrams to Use
Chapter Summary

Exercises

APPENDIX A
A Difficult Structuring Problem

APPENDIX B
Using a Large Decision Table

INDEX

Table of Contents ix

376
377
377
378
378
379
380
381
382
387
388

391
391
391
394
396
396
398
399
400)
400)
403
403
404
405
406
407
408
408

411
41
412
414
420
425
427
428
430
432
432
434

A-1

B-1

1-1

I
CHAPTER

|

AN OVERVIEW OF COMPUTERS
AND LOGIC

After studying Chapter 1, you should be able to:
Understand computer components and operations

Describe the steps involved in the programming process
Describe the data hierarchy

* & & o

Understand how to use flowchart symbols and pseudocode
statements

Use and name variables

Use a sentinel, or dummy value, to end a program
Use a connector symbol

Assign values to variables

Recognize the proper format of assignment statements

* & & & ¢ o

Describe data types

UNDERSTANDING COMPUTER COMPONENTS AND OPERATIONS

The two major components of any computer system are its hardware and its software.
Hardware is the equipment, or the devices, associated with a computer. For a computer
to be useful, however, it needs more than equipment; a computer needs to be given
instructions. The instructions that tell the computer what to do are called software, or
programs, and are written by programmers. This book focuses on the process of writing
these instructions.

Together, computer hardware and software accomplish four major operations:
1. Input
2. Processing
3. Output
4. Storage

Chapter 1 An Overview of Computers and Logic

Hardware devices that perform input include keyboards and mice. Through these
devices, data, or facts, enter the computer system. Processing data items may involve
organizing them, checking them for accuracy, or performing mathematical operations
on them. The piece of hardware that performs these sorts of tasks is the Central
Processing Unit, or CPU. After data have been processed, the resulting information is
sent to a printer, monitor, or some other output device. Often, you also want to store
the output information on hardware, such as magnetic disks or tapes. Computer soft-
ware consists of all the instructions that control how and when the data are input, how
they are processed, and the form in which they are output or stored.

Computer hardware by itself is useless without a programmer’s instructions or software,
just as your stereo equipment doesn’t do much until you provide music on a CD or tape.
You can enter instructions into a computer system through any of the hardware devices
you use for data: for example, a keyboard or disk drive.

You write computer instructions in a computer programming language such asVisual
Basic, Pascal, COBOL, RPG, C#, C++, Java, or Fortran. Just as some humans speak
English and others speak Japanese, programmers also write programs in different lan-
guages. Some programmers work exclusively in one language, while others know sev-
eral and use the one that seems most appropriate for the task at hand.

No matter which programming language a computer programmer uses, the language has
rules governing its word usage and punctuation. These rules are called the language’s
syntax. If you ask, “How the get to store do 1?” in English, most people can figure out
what you probably mean even though you have not used proper English syntax.
However, computers are not nearly as smart as most humans; with a computer you might
as well have asked, “Xpu mxv ot dodnm cadf B?” Unless the syntax is perfect, the com-
puter cannot interpret the programming language instruction at all.

Every computer operates on circuitry that consists of millions of on-off switches. Each
programming language uses a piece of software to translate the specific programming
language into the computer’s on-off circuitry language, or machine language.The lan-
guage translation software is called a compiler or interpreter, and it tells you if you
have used a programming language incorrectly. Therefore, syntax errors are relatively
easy to locate and correct. If you write a computer program using a language such as
C++, but spell one of its words incorrectly or reverse the proper order of two words,
the translator lets you know it found a mistake as soon as you try to run the program.

Although there are differences in how compilers and interpreters work, their
v basic function is the same—to translate your programming statements into
nip] code the computer can use.

Understanding Computer Components and Operations 3

For a program to work properly, you must give the instructions to the computer in a spe-
cific sequence, you must not leave any instructions out, and you must not add extraneous
instructions. By doing this, you are developing the logic of the computer program.
Suppose you instruct someone to make a cake as follows:

Stir

Add two eggs

Add a gallon of gasoline

Bake at 350 degrees for 45 minutes
Add three cups of flour

Even though you have used the English language syntax correctly, the instructions are
out of sequence, some instructions are missing, and some instructions belong to proce-
dures other than baking a cake. If you follow these instructions, you are not going to
end up with an edible cake, and you may end up with a disaster. Logical errors are much
more difficult to locate than syntax errors; it is easier for you to determine whether eggs
is spelled incorrectly in a recipe than it is for you to tell if there are too many eggs or
they are added too soon.

Just as baking directions can be given correctly in French, German, or Spanish, the same
logic of a program can be expressed in any number of programming languages. This
book is almost exclusively concerned with the logic development process. Because it is
not concerned with any specific language, this book could have been written in
Japanese, C++, or Java. The logic is the same in any language. For convenience, the book
uses English!

Once instructions have been input to the computer and translated into machine language,
a program can be run or executed.You can write a program that takes a number (an input
step), doubles it (processing), and tells you the answer (output) in a programming language
such as Pascal or C++, but if you were to write it in English, it would look like this:

Get inputNumber
Compute calculatedAnswer as inputNumber times 2
Print calculatedAnswer

The instruction to Get inputNumber is an example of an input operation. When the
computer interprets this instruction, it knows to look to an input device to obtain a
number. Computers often have several input devices, perhaps a keyboard, a mouse,a CD
drive, and two or more disk drives. When you learn a specific programming language,
you learn how to tell the computer which of those input devices to access for input. For
now, however, it doesn’t really matter which hardware device is used as long as the com-
puter knows to look for a number. The logic of the input operation—that the computer
must obtain a number for input, and that the computer must obtain it before multiply-
ing it by two—remains the same regardless of any specific input hardware device.

Many computer professionals categorize disk drives and CD drives as storage
9 devices rather than input devices. Such devices actually can be used for input,
nip] storage, and output.

