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Preface

The design and analysis of data structures and efficient algorithms has
gained considerable importance in recent vears. The concept of
“algorithm™ is central in computer science. and “efficiency™ is central
in the world of money.

{ have organized the material in three volumes and nine chapters.
Vol. 1: Sorting and Searching (chapters 1 to 111)
Vol. 2: Graph Algorithms and NP-completeness (chapters IV to
VI)
Vol. 3: Multi-dimensional Searching and Computational Geo-
metry (chapters VII and VIII)

Volumes 2 and 3 have volume 1 as a common basis but are indepen-
dent from each other. Most of volumes 2 and 3 can be understood
without knowing volume 1 in detail. A general kowledge of algorith-
mic principles as laid out in chapter 1 or in many other books on
algorithms and data structures suffices for most parts of volumes 2 and
3. The specific prerequisites for volumes 2 and 3 are listed in the
prefaces to these volumes. In all three volumes we present and analyse
many important efficient algorithms for the fundamental computa-
tional problems in the area. Efficiency is measured by the running
time on a realistic model of a computing machine which we present in
chapter 1. Most of the algorithms presented are very recent inven-
tions; after all computer science is a very young field. There are hardly
any theorems in this book which are older than 20 years and at least
fifty percent of the material is younger than 10 years. Moreover, 1
have always tried to lead the reader all the way to current research.

We did not just want to present a collection of algorithms; rather we
also wanted to develop th~ tundamental principles underlying effi-
cient algorithms and their analysis. Therefore, the algorithms are
usually developed starting from a high-level idea and are not pre-
sented as detailed programs. [ have always attempted to uncover the
principle underlying the solution. At various occasions several solu-
tions to the same problem are presented and the merits of the various
solutions are compared (e.g. 11.1.5, 1I1.7 and V.4). Also, the main
algorithmic paradigms are collected in chapter IX, and an orthogonal
view of the book is developed there. This allows the reader to see
where various paradigms are used to develop algorithms and data
structures. Chapter IX is included in all three volumes.

DcV‘-é—loping an efficient algorithm also implies to ask for the optimum.
Technigues for proving lower bounds are dealt with in sections I11.1.6.



VI

11.3, V.7, VII.1.1, VI1.2.3; most of chapter VI on NP-completeness
also deals in some sense with lower bounds.

The organization of the book is quite simple. There are nine chapters
which are numbered using roman numerals. Sections and subsections
of chapters are numbered using arabic numerals. Within each section,
theorems and lemmas are numbered consecutively. Cross references
are thade by giving the identifier of the section (or subséction) and the
number of the theorem. The common prefix of the identifiers of origin
and destination of a cross reference may be suppressed, i.e., a cross
reference to section VII.1.2 in section VII.2 can be made by either
referring to section VIL.1.2 or to section 1.2.

Each Chapter has an extensive list of exercises and a section on
bibliographic remarks. The exercises are of varying degrees of
difficulty. In many cases hints are given or a reference is provided in
the section on bibliographic remarks.

Most parts of this book were used as course notes either by myself or
by my colleagues N. Blum, Th. Lengauer, and A, Tsakalidis. Their
comments were a big help. I also want to thank H. Alt, O. Fries,
St. Hertel, B. Schmidt, and K. Simon who collaborated with me on
several sections, and I want to thank the many students who helped to
improve the presentation by their criticism. Discussions with many
colleagues helped to shape my ideas: B. Becker, J. Berstel, B. Com-
mentz-Walter, H. Edelsbrunner, B. Eisenbarth, Ph. Flajolet,
M. Fortet, G. Gonnet, R. Giittler, G. Hotz, S. Huddleston, I.
Murtro, J. Nievergelt, Th. Ottmann, M. Overmars, M. Paterson, F.
Preparata, A’ Rozenberg, M. Stadel, R. E. Tarjan, J. van Leeuwen,
-D. Wood, and N. Ziviani.

The drawings and the proof reading was done “aby my student Hans
Rohnert. He did a fantastic job. Of course, all remaining errors are
my soie responsibility. Thanks to him, there should not be too many
left. The typescript was prepared by Christel Korten-Michels, Mar-
tina Horn, Marianne Weis and Dosis Schindler under sometimes
hectxc conditions. I thank them all.

Saarbriicken, April 1984 . Kurt Mehthorn



Preface to Volume 1

Volume 1 deals with sorting and searching. In addition. there is a
chapter on fundamentals. Sorting and searching are the oldest topics
in the area of data structures and efficient algorithms. They are still
very lively and significant progress has been made in the last 10 years.
I want to mention just a few recent inventions here; they and many
others are covered extensively in the book: randomized algorithms,
new methods for proving lower bounds. new hashing methods. new
data structures for weighted and/or dynamic data, amortized analysis
of data structures, .... Many of these new techniques have never
appeared in book form before. 1 have tried td combine them with the
classical knowledge about sorting and searching so as to lead the
reader from the basics to current research.

Chapter I (Fundamentals) covers the basics of computer algorithms.
First, a realistic model of computation (deterministic or probabilistic
random access stored program machine) is defined, and the concepts
of running time and storage space are introduced. Then a high level
programming language and its connection with the machine model is
discussed. Finally, some basic data structures such as queues. stacks.
linked lists, and static trees are introduced, and some of their
properties are derived. The material covered in this chapter lays the
ground for all other chapters; the material (except for the section on
randomized algorithms) is usually covered in introductory computer
science courses.

In Chapter 1I (Sorting)-we deal with sorting, selection, and lower
bounds. We start with a detailed discussion of several general sorting
methods, most notably heapsort, quicksort, and mergesort. The
section on quicksort also contains a treatment of recurrence equations
which arise frequently in the analysis of recursive programs. In scction
2 we deal with sorting by distribution (bucketsort). We apply it to
sorting words and sorting reals. The last section. finally, discusses fast
algorithms for the selection problem. The sections on efficient
algorithms are contrasted with methods for proving lower bounds. We
first discuss methods for proving lower bounds in various decision tree
models and then show how to lift some of these lower bounds to
(restricted) RAM models. :

Chapter 111 (Sets) is an in depth treatment of (one-dimensional)
searching prohlems; multi-dimensional searching is discussed in chap-
ter VII. We cover digital search trees, hashing. weighted trees,
balanced trees, and dynamic weighted trees as methods for represent-
ing subsets of an infinite (or at least very large) universe. In section 7



we compare the data structures introduced in the first six sections. The,
last section covers data structures for subsets of a small universe where
direct access using arrays becomes feasible. In the course of chapter
ITI we also deal with important algorithmic paradigms, e.g. dynamic
programming, balancing, and amortization.

There are no special prerequisites for volume 1. However, a certain
mathematical maturity and previous exposure to programming and
computer science in general is required. The Vordiplom (= examina-
tion at the end of the second year within the German university
system) in Computer Science certainly suffices.

Saarbriicken, April 84 Kurt Mehlhorn
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I.” Foundations

We use computer algorithms to solve problems,Ae.g. to compute the maxi-
mum. of a set of real numbers or to compute the preduct of two integers.
A problem P consists of infinitely problem instances. An instance of
the maximum problem is e.g. to compute the maximum of the following

set of 5 numbers 2,7,3,9,8. An instance of the multiplication problem
is e.g., to compute the product of 257 and 123. We associate with every
problem instance p € P a natural number g{(p), its size. Sometimes, size
will be a tuple of natural numbers; e.g. we measure the size of a graph
by a pair consisting of the number of nodes and the number of edges. In the
maximum problem we can define size as the cardinality of the input set
(5 in our example), in the multiplication problem we can define size

as the sum of the lengths of the decimal representations of the factors
(6 in ourvefample). Although the definition of size is arbitrary, the}e
is usually a natural choice.

Execution of a program on a machine requires resources, e.g. time and
space. Resource requirements depend on the input. We use TA(p) to de-
note the run time of algorithm A on problem instance. p. We can deter-

mine T, (p) by experiment and measure it in milliseconds.

Global information about the resource requirements of an algorithm is
in general more informative than information about resource require-
ments on particular instances. Global infcrmation such as maximal run
time on an input of size n cannot be determined by experiment. Two

abstractions are generally used: worst case and average case behaviour.

Worst case behaviour is maximal run time on any input of a particular

size. We use TA(n) to denote the

Tp(n) = sup{T,(p); p € P and g(p) = n}
(worst case) run time of algorithm A on an input of size n. Worst case
behaviour takes a pessimistic look at algorithms. For every n we single

out the input with maximal run time.

Sometimes, we are given a probability distribution on the set of prob-

lem instances. We can then talk about average (expected) case behaviour;



it is defined as the expectation of the run time on problems of a particﬁ-
lar size

av

Ta

(n) = E({TA(R); p € P and g(p) = n})

In this book {(chapters II and III) computing expectations always re-
duces to computing finite sums. Of course, average case run time is
never larger than worst case run time and sometimes much smaller. How-
ever, there is always a problem with average case analysis: does the
actual usage of the algorithm conform with the probability distribution

on which our analysis is baséd?

We can now formulaize one goal of this book. Determine TA(n) for impor-
tant algorithms A. More generally, develop methods for determining
TA(n). Unfortunately, this goal is beyond our reach for many algorithms
in the moment, We have to confine ourselves to determine upper and
lower bounds for TA(n), i.e. to asymptotic analysis. A typical claim
will be: T(n) is bounded above by some gquadratic function. We write

T(n) = O(nz) and mean that T(n) < en? for some ¢ > O, n, and all n z ng,
Or we claim that T(n) grows at least as fast as n log n. We write )
T(n) = 9(n log n) and mean that there are constants c¢ > O and n, such

0o

that T(n) 2 ¢ n log n for all n 2 Ny - We come back to this 'notation in

section I.6.

We can also compare two algorithms A1 and A2 for the same problem. We

say, that A, is faster than A, if‘TA1(n) < TA {n) for all n and that
A, is asymptotically faster than A, if 1lim T, (n)/T, (n) = 0. Of

course, if Ay is asymptotically faster than A, then A, may still be
rnore efficient than A1 on instances of small size. This trivial obser-

vation is worth being exemplified.

Let us assur= that we have 4 algorithms A,RB,C,D for solving problem P

with run times TA(n) = 1000 n, TB(n) = Zoo n loag n, Tc(n) = 10 n2 and
TD = 2" nillisecconds (luy denctes log to base two throughout this
book). Then D is fastest for O <= n € 9, C is fastest for 10 £ n £ 100

and A is fastest for n z 101. Algorithm B is never the most efficient.

How large a problem instance can we solve in one hour of computing
time? The answer is 3600 (1500, 600, 22) for algorithm A(B,C,D). If
maximal solvable problem size is too small we can do either one of two

things. Buy a larger machine or switch to a more efficient algorithm.



Assume first that we buy a machine which is ten timeés as fast as the
present one, or alternatively that we are willing to spend 10 hours of
computing Eime. Then meximal solvable proplem size goes up to 36000
(13500, 1900, 25) for algorithmé A(B,C,D). We infer from this example,
that buying a faster machine hardly helps if we use a very inefficient
algorithm (algorithm D) and that switching to a faster algorithm has a
more drastic effect onbmaximally solvable problem size. More generally,
we infer from this example that asymptotic analysis is a useful concept
and that special considerations are reguired for small instances. (cf.’

sections II.1.5 and V.4)

So far, we discussed the complexity of algorithms, sometimes, we will
also talk about the complexity of problems. An upper bound on the complexi-
ty of a problem is established by devising and analysing an algorithm;
i.e. a problem P has complexity O(nz) if there is an algorithm for P
whose run time is bounded by a guadratic functibn. Lower bounds are
harder to obtain. A problem P has complexity Q(nz) if every algorithm
for P has run time at least Q(nz), Lower bound proofs require us to
argue about an entire class of algorithms and are usually very diffi-
cult. Lower bounds are available only in very rare circumstances (cf.
11.1.6.,IX1.3,,I1IT.4. and V.7.).

We will next define run time and storage space in precise terms..To do
so we have to introduce a machine model. We want this machine model to
abstract the most important features of existing computers, so as to
make our analysis meaningful for every-day computing, and to make it

simple enough, to make analysis possible.

I. 1. Machine Models: RAM and RASP

A random access machine {RBM) consists of 4 registers, the accumulator
o and index registerS'Y1,Y2,Y3 (the choice of three index registers is
arbitrary), and an infinite set of storage locations numbered 0,1,2,....

(see figure next page).
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YZI index reg 2 J

y3[ index reg 3 J ; :

The instruction set of a RAM consists of the following list of one
address instructions. We use reg to denote an arbitrary element of a,
§1,72,Y3, i to denote a non-negative integer, op to denote an operand
of the form i, p(i) or reg,and mop to denote a modified operand of the
form p(i + yj). In applied position operand i evaluates to number i,
p(i) evaluates to the content of location i, reg evaluates to the con-
tent of reg and (i + Yj) evaluates to the content of locaction num-
bered (i + content of Yj). Modified operands are the only means of
address calculation in RAMs. We discuss other possibilities at the end

of the section. The instruction set consists of four groups:
Load and store instructions

reg = op , e.g9. Y, - p(2)
@« mop , €.9. o < plyy, + 3)

+
<

op - reg , e.g. p(3)
mop - o , e.d. p(y2 + 3) <« a

Jump instructions

goto k , k E INO

if reg T then goto k | , k € INO

where n € { =, %, <, £, >, 2} is a comparison operator.

Arithmetic instructions

@« o W mop

where n € { +, -, x, div, mod} is an arithmetic operator.



Index reqgister instructions

Y. < vy, 4+ 1 1 <£3j<3,1i¢€iN
J 3

A RAM program is a sequence of instructions numbered 0,1,2,... . Inte-
ger k in jump instructions refers to this numbering. Flow of control
runs through the program from top, to bottom except for jump instruc-

tions.

Example: A RAM program for computing 2": We assume that n is initially
stored in location O. The output is stored in location 1.

O: Y1 = p(0) 1
T: o <« 1 1
2: if Y, = O then goto 6 n+1
3: a <« o0 x 2 n
4: Y v Yy -1 n
5: goto 2 n
6: p(1) « a 1

The right column shows the number of executions of each instruction on

input n. o

In our RAMs there is only one data type: integer. It is straightfor-
ward to extend RAMs to other data types such as boolean and reals; but
no additional insights are gained by doing so. Registers and locations
can store arbitrary integers, an unrealistic assumption. We balance
this unrealistic assumption by a careful definition of execution time.
Execution time of an instruction consists of two parts: storage access
time and execution time of the instruction proper. We distinguish two

cost measures: unit cost and logarithmic cost. In the unit cost measure

we abstract from the size of the operands and charge one time unit for
each storage access and instruction execution. The unit cost measure

is reasonable whenever algorithms use only numbers which fit into
single locations of real computers. All agorithms in this book (except
chaoter VI) are of this kind for practical problem sizes and we will
therefore always use unit cost measure outside chapter VL However, the
reader should be warned. Whenever, he analyses an algorithm in the unit

cost measure, he should give careful thought to the size of the operands



involved. In the logarithmic cost measure we explicitely account for

the size of the operands and charge according to their lenght L( ).

If binary representation is used then
1 if n =20

log n; + 1 otherwise

and this explains the name logarithmic cost measure. The logarithmic
cost measure has to be used if the numbers inveolved do not fit into
single storage locations anymore. 1t is used exclusively in chapter VI.
In the following table we use m to dencte the number moved in load and
s%ore instructions, and m, and m to denote the numbers operated on in
an arithmetic instruction. The meaning of all other quantities is im-

mediate from the instruction format.

Cost for Storage Access

Operand Unit Cost Logarithmic Cost
i 6] 0
reg o] . 0O
o (i) 1 L(1)

p(i + Yj) 1 L{i) + L(Yj)

Cost for Executing the Instruction Proper

Load and Stores 1 1+ Lim)

Jumps 1 1 + Lk)
Arithmetic 1 T+ Limy) + L(m,)
Index 1

1+ L(Yi) + L(1)

The cost of a conditional jump if reg m O then goto k is independent of
the content of reg because all comparison operators reguire only to

check a single bit of the binary representation of reqg.

Under the unit cost measure the cost of an instruction is 1 + # of
storage accesses, under the logarithmic cost measure it is 1 + # of
storage accesses + sum of the lengths of the numbers involved. Thus the

eXecution time of an instruction is independent of the data in the unit



