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PREFACE

This is a set of lecture notes for a graduate course given at Brown University.
The purpose in writing these notes was to bring together some basic material on
fibre bundles previously scattered in books and papers.

The first section of Chapter 1 contains the definitions of the classical
groups and the definition of homogeneous space. In sections 2 and 3, cellular
decompositions of the groups are given and the Pontryagin rings are calculated.
The results of sections 2 and 3 are not used until the last section of Chapter 3,
so the reader can, if he chooses, proceed from section 1 directly into Chapter 2.
The material in Chapter 1 can be found in [Steenrod 1] for an application of the
results of Chapter 1 to the existence of vector fields on spheres.

The material in Chapter 2 and in the first three sections of Chapter 3 can be
found in [Steenrod 2] and [Husemoller]. The final two sections of Chapter 3 con-
tain a sketch of Milgram's construction of the universal classifying space of a
topological group. The reader is referred to [Steenrod 3] and [Milgram] for
additional details.

I want to express my appreciation to the Mathematics Department at Brown
University for the opportunity to teach the course and for their support in having
the notes typed.

Richard D. Porter
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Chapter 1
THE CLASSIC GROUPS

1. Homogeneous Spaces and the Classic Groups

Definition of Quaternions. The algebra Q of quaternions is the four

dimensional vector space over the Reals with basis {l,i,j,k} with
multiplication defined by setting.
i = j2 = k% = -1

ij = -3i =k

by making 1 a two sided unit and by requiring that the multiplication
be associative. The conjugate of the quaternion x = a + ib + jc + kd
is X =a - jb - jc — k@ and the norm of a quaternion x is xx,

denceted by ||x]]-

It is easily seen that the quaternions satisfy:

ik = -ki = -3

jk = -kj = i
x|| = a‘ + + ¢ +d° so x:x = x-X
[1x]| =0 4iff x =0

if x % 0, then TTETT is a two sided inverse of x

and ||x|]|-]|¥l| = |lxy|].

The Quaternions form an associative (but not commutative) algebra of
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dimension 4 over the reals. Each nonzero Quaternion has a two sided
inverse.

The Quaternions can also be viewed as a two dimensional vector
space over the complex numbers € with basis {1,j}, multiplication
defined by requiring associativity, by requiring that 1 be a two
sided unit and by setting x3j = jX (x £ C). The correspondence be-
tween these two points of view is given by (a+ib) + j(c-id)

=a+ib + jc + kd. If gq=x + jy, then q = X - iy.

Reals if 4 =1

Notation. If d = 1,2, or 4, then Fd = Complexes if 4 = 2

Quaternions if d = 4

F will be used to denote Fl’F2 or F4. F? denotes the n-dimensional

vector space over F consisting of column vectors with entries in F.

]
=

Definition. If x = : and y = are in Fn, the scalar

L]
o]
" oo

| o333

product <x,y> is defined by <x,y> = i—l;iyi. The norm of x, ||x]|],
is defined by ||x|| = <,x.

Direct calculation shows that ||x|| is a real number and
|1x]| =0 iff x = 0. If ||x|] =1, then x is called a unit vector

in F®. The space of unit vectors in F" is the sphere, s"971,
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The scalar product satisfies
Lo (xoy+y,> = GayD + iy
2. (xphxgyd> = &powp ¥ &y
3. oy = Xy
4. <x,y>\> &uy)r, A e F
5. <x>\,y>

7\'<x,y>, A eF using (xy) = y:X, x and y in

Definition. G(n) denotes the set of all linear transformations L of

n

F into FP® which preserve scalar products. That is

L e G(n) iff {x,Ly) = <ﬁ,y> for all x and y in FO.

It is easily seen that

l. If L and T are in G(n), then L T is in G(n).

2, If L e G(n), then L is invertible and 1™} is in G(n).

Thus G(n), with product given by the composition of linear transforma-

tions, is a group.

Definition. If 4 = 1, then G(n), denoted by 0(n), is called the
orthogonal group. If d = 2, then G(n) is denoted by U(n) and
called the unitary group. If d = 4, then G(n) 1is dencted by

Sp(n) and called the symplectic group.

Note: The map G(l) - (unit sphere in F) defined by L -+ L(1l) is

an isomorphism of groups.
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So 0(1) = {-1,1} = Z,
U(l) = unit complexes = Sl
Sp(l) = S3 = unit quaternions
0
i - ith place, n
Let ui be the vector 0 in F, then
0
B = {ul e un} is an orthonormal basis for F". Given a linear

transformation L: F" » Fn, with L in G(n). Set [L]B,B equal to
the n X n matrix with entries in F whose ith column is the vector
L(ui). The map L -+ [L]B.B defines a group isomorphism between G(n)
and a certain subgroup of the group of all invertible n x n matrices

with entries in F.

Proposition 1.1.1. G{(n) is isomorphic to the group of all n x n

matrices, A, over F with the property that the columns of A form

an orthonormal basis for Fn, which in turn equals the group of all

n x n matrices over F, with the property that KtA =1,

Proof. Let L € G(n). L preserves scalar products and so
[[L(x)|]| = ||x|] for all x in F®. Thus L takes any orthonormal

basis for F" into an orthonormal basis for F". In particular,

{Lu; N, so if 1L e G(n),
n

then the columns of [L]B 8 form an orthonormal basis for F°.
r

s Lun} is an orthonormal basis for F
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Conversely, let A be any n X n matrix with entries in F whose

columns form an orthonormal basis for F». Since Aui = ith column

of A, we have that (Au,,Au.> = §,. where

3 ij

0 if i 43

+ 1 if i=3

Let x and y be in Fn, to show <§x,Ay> = <x,y> , Write

n
) u;y; with x; and y, in F. Then

n
x= Jux,y-=
gy 4 i=1

Gx,ap

<é2uixi,AZujyj>

{?Auixi,ZAujy5>

Z Z <§uixi,Aujyj>
§i<?ui,Au§>yi

X, 6,.Y: =) ;iyi = <ﬁ,i>.
i

[ T .

1°1)7 )]

j
)
j
)
j

This, together with [TeL] = [T) °o[L] ,» proves the first part
B,B 8,8 8,8
of Proposition 1.1.1.

The second part follows from the observation that the 1i,j
entry of the matrix XtA is the scalar product (?ui,Auj>. From now

on G(n) will be identified with the corresponding group of matrices.



INTRODUCTION TO FIBRE BUNDLES

Definition. If G is a group and a topological space, then G is

called a topological group if

1.

and

G + G defined by x - x 1 is continuous

G *x G+ G defined by (x,y) > Xy is continuous.

Examples of topological groups.

1.

7.

2
G(n) topologized as a subspace of FBY

R'! and R" (additively)

rY - {0} (multiplicatively)

For d =1 or 2 set GL(n,Fd) equal to the group of all
invertible n x n matrices witg entries in Fgq- Topologize
GL(n,Fd) as a subspace of Fdn. For d =1 or 2 set
SL(n,Fd) equal to the subgroup of GL(n,Fd) consisting of
matrices with determinant 1. Set S0(n) equal to the sub-
group of 0(n) consisting of matrices with determinant 1,
and set SU(n) egual to the subgroup of U(n) consisting
of matrices with determinant 1.

Let G be a group, then G with discrete topology is a
topological group.

A product of topological groups is a topological group.

If H is a closed, normal subgroup of G, then G/H with
the quotient space topology is a topological group. For
example if 1" denotes the subgroup of R" consisting of

vectors with integer coordinates, then Rn/In can be
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identified with the product §S' x ... x 5' of topological
TN T T
n

groups.
8. If X 1is a compact, Hausdorff space; set h(X) equal to
the group of homeomorphisms of X onto itself. Then h(X)

with the compact open topology is a topolegical group.

Definition. Let G be a topological group, and let H be a closed
subgroup, then the space of left cosets, G/H, topologized as a

quotient space of G is called a homogeneous space.

Examples of homogeneous spaces.

1. If k < n, define G(k) » G(n) by A - [ 2 g } In this
way G(k) is a closed subgroup of G(n). The homogeneous space

G(n)/G{k), denoted by G(n,k), is the Stiefel manifold of ordered
orthonormal (n-k) frames in F". For example G(n,n-1) is homeo-
s"l for n > 2.

morphic to the sphere
2. If k <n, define G(k) x G(n-k) » G(n) by (A,B) - [ % g ].

In this way, G(k) x G(n-k) is a closed subgroup of G(n). The homo-
geneous space G(n)/G(k) * G(n-k), denoted by M(n,k) is the
Grassmanian manifold of (n-k) dimensional subspaces of F". Thus
M(n,k) is homeomorphic to M(n,n-k) and M(n,n-1l) is the real,

complex, Quaternionic projective space of real dimension d(n-1).

To see that G(n,k) is the space of ordered orthonormal (n-k)
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frames in Fn, it suffices to prove that AG(k) = BG(k) iff A and

B have the same last (n-k) columns. This is done by observing that
if C € G(k), A € G(n); then AC and A have the same last (n-k)
columns, and that if A and B have the same last (n-k) columns,
then A—lB e G(k).

To see that M(n,k) is the space of (n-k) dimensional sub-
spaces of Fn, it suffices to prove that A(G(k) x G(n-k)) equals
B(G(k) x G(n-k)) 4iff the last (n-k) columns of A and the last
(n~k) columns of B are bases for the same (n-k) dimensional sub-
spaces of F". This is done by observing that if C e G(k) x G(n-k),
A € G(n); then the last (n-k) columns of AC and the last (n-k)
columns of A gpan the same subspace of Fn, and that if the last
(n-k) columns of A and the last (n-k) columns of B are bases

for the same subspaces of F®, then A1

since A™! = &t

B £ G(k) X G(n-k). Note that

, the (i,j)th entry of the matrix A YB is the scalar

th

product <ith column of A, j column of B>.

2. Cell Structure of 0(n),U(n),Sp(n)

Definition of ¢. Let 8" ! pe the sphere of unit vectors in FP™.

Snd-l Sd-l

Define ¢: x

Qc,y>=o and ¢ (x,\)x

+ G(n) by requiring that ¢(x,\)y =y if

XA. Then

o(x, M)y = x(A-1)x,¥> + y

[<b(x,)\)]ij = xi(A—l)xj + sij in matrix notation.
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If m < n, the usual inclusion of F* in F" induces a

commutative diagram

Smd-l x sd—l Snd-l x sd-l
e s
G (m) G(n)
Definition of Q . Let Q  be the quotient space of gnd-1 , gd-1

induced by ¢ for n > 1, and let Qo be a gingle point. Map Qo

into G(n) by Qo + I.

Qn Q,
Note: 1. The diagram L ¢ is commutative.

G(m) ——> G(n)

nd-1 a-1

2. Qn is the quotient space of § x 8 by the
relations (x,\) = (xv,v 'Av) and (x,1) = (y,1).

A direct calculation shows that ¢(x,A) = ¢(xv,v TAv)
and ¢(x,A) =1 1iff X =1,

To see that these are all the relations, suppose

¢(x,A) = ¢(y,y) # I. Considering the fixed point sets
of ¢(x,A) and ¢(y,y) shows that y = xv for some v
in 371,

o(x,A)x = xA 8o ¢(x,A)xv = xAv and ¢(xv,Y) = xvy.
Thus ¢(x,2) = ¢(xv,y) dimplies vy = Av so0 ¥y = v-lkv.

3. Qn is a compact Hausdorff space, Qn + G(n) and
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Qm > Qn for m < n, are embeddings

Q, 1s compact since it is the image of ghd-1 , gd-1
which is compact. Since Qn is compact and

Qn + G(n) is 1-1, the map Qn + G(n) is an embedding.
(Recall any continuous 1-1 map of a compact space into

a Hausdorff space is an embedding.)

The next step is to show that Qn is a C. W. complex.

consider E™ DY 45 the ball of vectors x in
sP L <« PP yien x  real and > 0. (Note:
/ n=-1
x.=/1- 7 %x..) Let f_: g™ Dd, gnd-1 . 4o

Ed_l,Sd_z 1

inclusion map. Let g: ( y » (s9° ,1) be the

usual relative homeomorphism (s71 = 6, EC = (-1}).

Set h : gnd-1 Q.(n > 1) equal to the composition

nd-1 _ (n-1d , a-1 %n*9  na-1 a1 9

E X E ——> 8 X 8 —=Q

n-*

Lemma 1.2.1. The map hn defines a relative homeomorphism
h : (End-l snd—z
’

n ) > (Qn, n-l)’ if n > 1. Therefore Qn is a C. W.

Complex with a 0-cell Qo and with an (md-1l)-cell for each m such
that 1 <m < n,.

a-1 a-2 nd-1 a-1

Proof. The image of E? - s" in S x 8 equals
{(x,A): X, is real and > 0, A # 1}, and Qn - Qn-l = {¢p(x,A): X # 0

nd-1 _ _nd-2 , _ .
and X # l1l}. So hn maps E -8 into Q -Q _; and is

e S —p— .



