Lecture Notes in

Mathematics

Jiirgen Berndt Franco Tricerri
Lieven Vanhecke

Generalized Heisenberg
Groups and Damek-Ricci
Harmonic Spaces

@): Springer



Jiirgen Berndt Franco Tricerri
Lieven Vanhecke

Generalized Heisenberg
Groups and Damek-Ricci
Harmonic Spaces

€Y Springer



Authors

Jiirgen Berndt

Mathematisches Institut
Universitiat zu Koln

Weyertal 86-90

D-50931 Koln, Germany
E-mail: berndt@mi.uni-koeln.de

Franco Tricerri T

formerly:

Dipartimento di Matematica “U. Dini”
Universita di Firenze

Lieven Vanhecke

Department of Mathematics
Katholieke Universiteit Leuven
Celestijnenlaan 200 B

B-3001 Leuven, Belgium

E-mail: fgagaO3@ccl.kuleuven.ac.be

Mathematics Subject Classification (1991): 53C20, 53C25, 53C30, 53C40, 22E25

ISBN 3-540-59001-3 Springer-Verlag Berlin Heidelberg New York

CIP-Data applied for

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1995
Printed in Germany

Typesetting: Camera-ready TgX output provided by the authors
SPIN: 10130255 46/3142-543210 - Printed on acid-free paper



Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
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Preface

The fundamental conjecture about harmonic manifolds has been a source of
intensive research during the past decades. Curvature theory plays a fundamental
role in this field and is intimately related to the study of the Jacobi operator and
its role in the geometry of geodesic symmetries and reflections on a Riemannian
manifold.

Our research about harmonic manifolds led in a natural way to the study of
spaces with volume-preserving geodesic symmetries and several related classes of
manifolds, in particular commutative spaces and Riemannian manifolds all of whose
geodesics are orbits of one-parameter groups of isometries. It was also a part of
our motivation for developing the theory of homogeneous structures. In this work,
the classical and the generalized Heisenberg groups provided a rich collection of
examples and counterexamples. It is also well-known that the latter ones take a
nice and important place in the florishing research about nilpotent Lie groups and
nilmanifolds.

Recently the picture has changed drastically on the one hand by the positive
results of Z.I. Szabé and on the other hand by the discovery of the Damek-Ricci
harmonic spaces which are the first counterexamples to the fundamental conjecture.
These manifolds are Lie groups whose Lie algebras are solvable extensions of gener-
alized Heisenberg algebras. The discovery of these spaces led to a renewed interest
in the field, in particular because, just as in the case of the generalized Heisenberg
groups, they were found during the work in harmonic analysis and not much atten-
tion was given to the detailed study of their geometry and the properties of their
curvature as reflected in those of the Jacobi operator.

These notes present a more detailed treatment of this aspect for both classes of
manifolds. We do this by relating our study to the several classes of Riemannian
manifolds which we have introduced or studied recently in the field of the geometry
of the Jacobi operator. It will be shown that they have a rich geometry and provide
again answers, examples and counterexamples for several other conjectures and open
problems. It is our hope that these notes will stimulate further fruitful research in
this area.

During our work in this field, many friends, collaborators and colleagues have
contributed by means of their lectures, discussions, joint work, encouragement and
interest. They all made this result possible. We are very grateful for their help
and for sharing with us their interest and love for mathematics and in particular for
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geometry. In particular, we thank O. Kowalski, F. Prufer and F. Ricei.

We also take the opportunity to thank our respective universities, the Consiglio
Nazionale delle Richerche (Italy) and the National Fund for Scientific Research
(Belgium) for their continued financial support.

Finally we express our deep gratitude to our families for giving us the time
needed to do what we enjoy so much.

Koln, Firenze, Leuven
May 1994

Jirgen Berndt, Franco Tricerri, Lieven Vanhecke

To our deep sorrow Franco Tricerri, his wife and his two children died in an
airplane crash two weeks after completion of this manuscript. Our loss is immeasu-
rable.

Jiirgen Berndt and Lieven Vanhecke
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cerning the geometry of generalized Heisenberg groups was that they are D’Atri
spaces, that is, have volume-preserving geodesic symmetries (up to sign). On the
other hand, these groups are not naturally reductive as a Riemannian homogeneous
space unless the dimension m of the center is one or three. This answered nega-
tively the question whether a D’Atri space is always locally isometric to a naturally
reductive Riemannian homogeneous space or not. Moreover, nilmanifolds arising as
compact quotients from generalized Heisenberg groups have attracted considerable
attention in spectral geometry. For more details see [Gor2], where the author pro-
vides, by using suitable compact quotients of generalized Heisenberg groups, the first
known examples of closed isospectral Riemannian manifolds which are not locally
isometric to each other.

As will be shown in Chapter 3 of these notes, generalized Heisenberg groups also
provide examples and counterexamples for other questions and conjectures. But up
to now, a systematic study of the geometry of these groups, in particular the aspects
relating to the Jacobi operator, was not available. One of the purposes of these notes
is to provide a thorough treatment of these aspects based on the explicit research
about the spectral theory of this operator and the explicit computation of the Jacobi
vector fields vanishing at a point. This method of attack does not only give new
geometrical properties but also yields new and more geometrical proofs of known
results. Moreover, by doing this, we will relate our research to the different classes
of Riemannian manifolds which have been introduced recently in the framework
of the study of the geometry of the Jacobi operator. Chapter 2 contains a short
survey about these classes including their definitions, known classifications, various
characterizations and relations between them.

Our interest in the treatment of D’Atri spaces, as introduced in [Dat], [DaNil],
and [DaNi2], came from the research about harmonic spaces. The fundamental con-
jecture about harmonic spaces (also referred to as the conjecture of Lichnerowicz)
stated that every Riemannian harmonic manifold is locally isometric to a two-point
homogeneous space. It was shown that the condition of harmonicity is equival-
ent to two infinite series of conditions on the curvature tensor and its covariant
derivatives, known as the even and odd Ledger conditions. The D’Atri property
is equivalent to the set of odd Ledger conditions. Only during the past five years
there was a breakthrough in this field on the one hand by the positive results by
Z.1. Szab6 (see 2.6) and on the other hand by the negative one by E. Damek and F.
Ricci. More precisely, the last two authors showed in [DaRil] that this conjecture is
false by proving that there exist suitable extensions of arbitrary generalized Heisen-
berg groups which are harmonic. Any such extension is a simply connected solvable
Lie group with a left-invariant Riemannian metric. Among these Lie groups are
the complex hyperbolic spaces, the quaternionic hyperbolic spaces and the Cayley
hyperbolic plane. Their horospheres provide realizations of the Heisenberg groups
in the complex case and of suitable generalized Heisenberg groups with three- and
seven-dimensional center, respectively, in the two other cases. In each of these par-
ticular cases the corresponding classical or generalized Heisenberg group is precisely
the nilpotent part in the Iwasawa decomposition of the isometry group of the hyper-
bolic space. The above mentioned extension is then the solvable part in the Iwasawa
decomposition and, as a group, is a semi-direct product of the nilpotent group and



the real numbers. By imitating this construction of the hyperbolic spaces as solv-
able Lie groups one obtains from each generalized Heisenberg group a solvable Lie
group with a left-invariant Riemannian metric. These particular extensions have
been called Damek-Ricci spaces. Any of these spaces is a Hadamard manifold with
the corresponding generalized Heisenberg group embedded as a horosphere, and is
either one of the above hyperbolic spaces or is non-symmetric. In the latter case
each one provides a counterexample to the fundamental conjecture about harmonic
spaces. Moreover, as is mentioned in [Gor2], the study of the closed geodesic balls
in Damek-Ricci spaces by Z.I. Szabé yielded the first examples of closed isospectral
Riemannian manifolds with boundary which are not locally isometric to each other.
As concerns the harmonic analysis on the Damek-Ricci spaces we again refer to

[DaRi2].

But also here, a detailed study of the geometry of the Damek-Ricci spaces is
appealing. Some aspects of it have already been considered by several authors (for
more details see Chapter 4). Using again the Jacobi operator, in Chapter 4 we
will consider those aspects which are related to some of the classes of manifolds
considered in Chapter 2. This leads to several new geometrical characterizations
of the symmetric Damek-Ricci spaces. It will also be proved that the Damek-
Ricci spaces provide, as in the case for generalized Heisenberg groups, examples and
counterexamples to open questions and conjectures. All this gives support for the
belief that a further study of their geometry will lead to the discovery of other nice
geometrical properties.

A more detailed description of the contents of each chapter will be given at the
beginning of each of the respective chapters.



Chapter 2

Symmetric-like Riemannian
manifolds

In this chapter we provide some basic material about various classes of Riemannian
manifolds which may be regarded as generalizations of Riemannian (locally) sym-
metric spaces. Our list of such generalizations is not exhaustive. For example, we
do not talk about the class of k-symmetric spaces [Kow1] which are natural gener-
alizations of symmetric spaces too. Our selection contains only those spaces which
are related to our research on generalized Heisenberg groups and their Damek-Ricci
harmonic extensions. Concerning the material about the spaces presented here we
have tried to be rather complete as regards known classifications and characteriza-
tions. The basic references given here will guide the reader to further results and
details on these spaces. See also [Van2] for a selection.

All manifolds are supposed to be connected and of class C*. Our sign convention
for the Riemannian curvature tensor R is given by R(X,Y) = [Vx, Vy] — Vix yj for
all tangent vector fields X,Y, where V denotes the Levi Civita connection.

2.1 Naturally reductive Riemannian
homogeneous spaces

Let M = G/H be a Riemannian homogeneous space endowed with a G-invariant
Riemannian metric g. The Lie group G is supposed to be connected and to act
effectively on M. A decomposition of the Lie algebra g of G into g = h @ m, where §
is the Lie algebra of H, is said to be reductive if Ad(H)m C m. If H is connected, a
decomposition g = h @ mis reductive if and only if [h,m] C m. Note that in the present
situation there always exists a reductive decomposition. For X, Y € m we denote
by [X,Y]m the projection of [X,Y] onto m. Each X € g generates a one-parameter
subgroup of the group I(M) of isometries of M via p — (exptX) - p and hence
induces a Killing vector field X* on M. If g = h @ m is a reductive decomposition
of g, the natural torsion-free connection V with respect to this decomposition is



defined by i i
(vpyjf=§xzrk=—§mﬁmn

for all X,Y € m, where 7(H) = o for 7 : G — G/H. Finally, a homogeneous
structure on M is a tensor field T of type (1,2) such that

Vg=VR=VT=0

for V := V — T, where V is the Levi Civita connection of (M,g) and R the cor-
responding Riemannian curvature tensor. Then we have the following characteri-
zations (or definitions) of naturally reductive Riemannian homogeneous spaces (for
(i) and (ii) see [KoNo,Chapter X,3]; for (iii) see [AmSi, Theorem 5.4] and [TrVal,
Theorem 6.2 and the subsequent remark]).

Proposition 1 [KoNo|, [AmSi], [TrVal] Let (M, g) be a homogeneous Riemann-
wan manifold. Then (M,g) 1s a naturally reductive Riemannian homogeneous space
if and only if there exist a connected Lie subgroup G of I(M) acting transitively and
effectively on M and a reductive decomposition g = h @ m of g, where b 18 the Lie
algebra of the 1sotropy group H at some point in M, such that one of the following
equivalent statements holds:

(l) g([Xv Z]may) +9(X, [Z, Y]m) =0 fOT all X, Y,Z € m;

(i) the Levi Civita connection of (M,g) and the natural torsion-free connection
with respect to the decomposition are the same;

(ii1) every geodesic in M 13 the orbit of a one-parameter subgroup of I( M) generated
by some X € m.

An important observation is that a Riemannian homogeneous space M = G/H
might be naturally reductive although for any reductive decomposition g = @ mof g
none of the statements in the proposition holds. The point is that there might exist
another appropriate subgroup G of I(M ) such that M = G’/ H and with respect
to which a reductive decomposition satisfies the required conditions. Because of
this ambiguity the following result has been proved worthwhile for verifying that
certain Riemannian homogeneous spaces are naturally reductive without knowing
their isometry group and its transitive subgroups explicitly (see [BeVad], [BlVa],
[GoGoVal], [GoGoVa2], [Nag], [ToVa], [TrVal], [TrVa2] for applications).

Proposition 2 [TrVal] Let (M, g) be a complete and simply connected Riemann-
tan manifold. Then (M,g) is a naturally reductive Riemannian homogeneous space
if and only if there exists a homogeneous structure T on M with T,v = 0 for all
tangent vectors v of M.

Every Riemannian symmetric space is naturally reductive. As the classification
of Riemannian symmetric spaces is known since the work of E. Cartan, we con-
centrate now on non-symmetric naturally reductive spaces. For dimension two the
situation is clear since any Riemannian homogeneous space obviously has constant
curvature and hence is a locally symmetric space. For non-symmetric naturally re-
ductive Riemannian homogeneous spaces in dimensions three, four and five there
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are the following results (for dimension three see [TrVal, Theorem 6.5] and in a
more explicit way [Kow3]; for the geometric realizations see [BeVa4]).

Theorem 1 [TrVal], [Kow3|, [BeVad] Let (M, g) be a three-dimensional simply
connected Riemannian manifold. Then (M,g) is a non-symmetric naturally reduc-
tive Riemannian homogeneous space if and only if it 1s one of the following spaces:

(4)

(1)

(iii)

the Lie group SU(2) with some special left-invariant Riemannian metric g.
There 13 a two-parameter family of left-invariant Riemannian metrics on
SU(2) making it into a naturally reductive Riemannian homogeneous space.
These metrics are precisely those obtained by considering SU(2) ~ S® as a
geodesic sphere in some two-dimensional complez projective or hyperbolic space
equipped with some Fubini-Study metric of constant holomorphic sectional cur-
vature;

the Lie group S’LZEIR) with some special left-invariant Riemannian metric
g. There is a two-parameter family of left-invariant Riemannian metrics on
SL(2,IR) making it into a naturally reductive Riemannian homogeneous space.
These metrics are precisely those obtained by taking the universal covering of
any tube around a one-dimensional complez hyperbolic space embedded totally
geodesically in a two-dimensional complez hyperbolic space equipped with some
Fubini-Study metric of constant holomorphic sectional curvature. In explicit
form, these spaces are given by M = IR[t, z,y] with

1
|a + b

ds® = dt? + |a + ble*dz? + (dy + V2be™"dz)?,
where a,b € IR with b > 0 and a + b < 0. Geometrically, a and b are the
eigenvalues of the Ricci tensor of M, the first one with multiplicity two;

the three-dimensional Heisenberg group Hs with any left-invariant Riemann-
tan metric g. There is a one-parameter family of such metrics on Hs and
they are obtained by realizing Hy as a horosphere in some two-dimensional
complez hyperbolic space equipped with some Fubini-Study metric of constant
holomorphic sectional curvature. Ezplicitly, M = R*[z,y, z] with

ds? = %(dzz +d2? + (dy — zdz)?),

where b € IR,. Here, —b and b are the eigenvalues of the Ricci tensor of M,
the first one with multiplicity two.

Theorem 2 [KoVal| Let (M,g) be a four-dimensional simply connected Rie-
mannian manifold. Then (M,g) is a non-symmetric naturally reductive Riemannian
homogeneous space if and only if it is isometric to some Riemannian product

SU@2)xR, SL(2,R) xR, Hy xR,

where the first factor 1s equipped with a naturally reductive Riemannian metric ac-
cording to the classification in dimension three.

6



Theorem 3 [KoVad] Every five-dimensional simply connected non-symmetric
naturally reductive Riemannian homogeneous space 1s either a Riemannian product

M, x M,, where M, 1s SU(2), SL(2,IR) or H; with some naturally reductive metric
and M, is some standard space of constant curvature, or locally isometric to one of
the following spaces:

(1)

(1)

(iii)

(i)

(S0(3) x 50(3))/S0(2), or (SO3) x SL(2,R))/SO(2), or (SL(2,R)x
SL(2,R))/SO(2),, where SO(2), denotes the subgroup consisting of pairs of

matrices of the form

cost —sint 0 cosrt —sinrt 0
sint cost 0 | x| sinrt cosrt 0 (teR)
0 0 1 0 0 1

and r is a rational number. On each of these spaces there is a family of
naturally reductive invariant Riemannian metrics depending on two real para-
meters. For each of the three types the whole family of locally non-isometric
spaces depends on two real parameters and one rational parameter;

(Hs x SO(3))/SO(2)™ or (Hs x SL(2,R))/SO(2)", where SO(2)") denotes

the subgroup consisting of all pairs of matrices of the form

10t costt —sinrt 0
01 0| x| sinrt cosrt 0 (te R)
001 0 0 1

and v is a rational number. On each of these spaces there is a family of
naturally reductive invariant Riemannian metrics depending on two real para-
meters. For each of the two types the whole family of locally non-isometric
spaces depends on two real parameters and one rational parameter;

the five-dimensional Heisenberg group Hs. The naturally reductive left-invari-
ant Riemannian metrics on Hy form a two-parameter family. Ezplicitly, these
spaces are M = R’[z,y, z,u,v] with

ds? = %(du’ +da?) + §(¢71v2 +dy?) + (ude + vdy — dz)?

and \,p € Ry,
SU(3)/SU(2) or SU(1,2)/SU(2), and on each space there is a family of nat-

urally reductive invariant Riemannian metrics depending on two real para-
meters.

Geodesic spheres in two-point homogeneous spaces except CayP? and CayH*
are naturally reductive Riemannian homogeneous spaces (see [Zil2] and [TrVa2]).
Every simply connected np-umbilical hypersurface of a complex space form is nat-
urally reductive [BeVa4]. This has been extended by Nagai [Nag] to the so-called
hypersurfaces of type (A) in complex projective spaces and their corresponding ones
in complex hyperbolic spaces. Every simply connected y-symmetric space (that is,
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a Sasakian manifold with complete characteristic field such that the reflections with
respect to the integral curves of that field are global isometries) is naturally reduc-
tive [BlVa]. Every simply connected Killing-transversally symmetric space (that is,
a space equipped with a complete unit Killing vector field such that the reflections
with respect to the flow lines of that field are global isometries) is naturally re-
ductive (see [GoGoVal] and [GoGoVa2]). Note that each ¢-symmetric space is a
Killing-transversally symmetric space.

For further results and references on naturally reductive Riemannian homogene-
ous spaces we refer to J.E. D’Atri and W. Ziller [DaZi], who also classified all
naturally reductive compact simple Lie groups. For a treatment of the non-compact
semisimple case, see C. Gordon [Gorl].

2.2. Riemannian g.o. spaces

A Riemannian manifold (M, g) is said to be a Riemannian g.o. space [KoVaT] if every
geodesic in M is the orbit of a one-parameter subgroup of the group of isometries
of M. Clearly, any such space is homogeneous. From Proposition 1(iii) in 2.1 we
derive immediately

Proposition Every naturally reductive Riemannian homogeneous space 13 a Rie-
mannian g.o0. space.

O. Kowalski and the third author [KoVa7] have proved that the converse holds
if the dimension is less than six.

Theorem 1 [KoVaT7] Every simply connected Riemannian g.o. space of dimen-
ston < 5 18 a naturally reductive Riemannian homogeneous space.

Combining this with Theorems 1, 2 and 3 in 2.1 yields a classification of all
simply connected Riemannian g.o. spaces of dimension less than six. For dimension
six the converse does not hold. In fact, there is the following result:

Theorem 2 [KoVaT7] The following siz-dimensional simply connected Riemann-
tan g.o. spaces (and only those) are never naturally reductive:

(1) (M,g) 1s a two-step nilpotent Lie group with two-dimensional center, pro-
vided with a left-invariant Riemannian metric such that the mazimal con-
nected 1sotropy group 1s isomorphic to SU(2) or U(2). All these Riemannian
g.0. spaces depend on three real parameters;

(i) (M, g) is the universal covering space of a homogeneous Riemannian mani-
fold of the form M = SO(5)/U(2) or M = SO(4,1)/U(2), where SO(5) or
S0O(4,1) s the identity component of the full isometry group, respectively. In
each case all admissible Riemannian metrics depend on two real parameters.

Every geodesic sphere in a two-point homogeneous space except Cay P? or Cay H?
is a Riemannian g.o. space since it is naturally reductive. For CayP? and CayH? it

8



is still an open problem whether the geodesic spheres are g.o. spaces or not.

2.3 Weakly symmetric spaces

A Riemannian manifold M is said to be a weakly symmetric space [Sel] if there
exist a subgroup G of the isometry group I(M) of M acting transitively on M
and an isometry f of M with f? € G and fGf~! = G such that for all p,qg € M
there exists a ¢ € G with g(p) = f(¢) and g(q) = f(p). It can easily be seen that
any Riemannian symmetric space is weakly symmetric. There are the following
geometrical characterizations of weakly symmetric spaces:

Proposition [BePrVal|, [BeVa5] Let (M,g) be a Riemannian manifold. Then
the following statements are equivalent:

(i) M is a weakly symmetric space;
(i) for any two points p,q € M there ezists an isometry of M mapping p to q and
q to p;

(111) for every mazimal geodesic v in M and any point m of v there ezists an
1sometry of M which is an involution on v with m as fized point.

Note that Riemannian manifolds having property (iii) have been introduced by
Szabé [Sza2] as ray symmetric spaces.

In dimensions three and four the simply connected weakly symmetric spaces are
completely classified.

Theorem 1 [BeVab] A three- or four-dimensional simply connected Riemann-
1an manifold 13 a weakly symmetric space if and only if 1t 13 a naturally reductive
Riemannian homogeneous space (see Theorems 1 and 2 in 2.1).

We also have the following further examples of non-symmetric weakly symmetric
spaces.

Theorem 2 [BeVa5| Each of the following hypersurfaces, endowed with the in-
duced Riemannian metric of the ambient space, is a weakly symmetric space for
n>2:

ambient space | hypersurface

cpr tube around {p},CP*,... , or CP*"!

HP" tube around {p},HP',... ,or HP"!

CayP? tube around {p} or CayP’

CH" horosphere; tube around {p},CH',...,or CH""!
HH" horosphere; tube around {p},HH',... or HH"!
CayH* horosphere; tube around {p} or CayH" .




