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Preface

Random Schrodinger operators are models for the quantum mechanical de-
scription of disordered media. The main aim of the analysis of such models
is the understanding of the (charge) transport properties of the material. It
turns out that many of the properties of interest of random Schrédinger oper-
ators are related to a quantity called integrated density of states. It measures
or ‘counts’ the number of electron energy levels of the Hamiltonian per unit
volume. An alternative name for the integrated density of states is spectral
distribution function since it is the distribution function of a spectral measure
associated to the random family of operators. Many features of this quan-
tity have an intuitive physical interpretation, others play a prominent role in
proofs of key theorems. Moreover, the spectral distribution function is an ob-
ject of study in other fields of mathematics, like differential geometry, group
and von Neumann algebras, and homological algebra.

What are the properties of the integrated density of states which have
been studied in the literature? It would be hard to give an exhaustive answer,
but there are several classes of questions that have drawn the attention of
many authors.

The first class is concerned with the definition and construction of the inte-
grated density of states. Can it be expressed as a limit of a sequence of distrib-
ution functions associated to the spectra of ‘simpler’ operators? These opera-
tors are usually restrictions of the original Schrédinger operator to some finite
volume set. There are various ways how to choose the approximation sequence
of operators. Thus another question comes up naturally: Does this choice in-
fluence the final outcome, or does one obtain the same distribution function,
independently of the approximation procedure? Furthermore, is there a closed
formula for the integrated density of states? If there are various such formulas,
are some of them better suited for certain applications than others?

Another circle of ideas concerns the continuity properties of the integrated
density of states and its set of points of increase: Can one characterise the lo-
cation and size of the discontinuities? What is the structure of the sets of
constancy of the integrated density of states? Since it is a spectral measure
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distribution, these questions are intimately related to the spectrum of the
random operator. Can one prove quantitative regularity properties of the in-
tegrated density of states: Is it log-Holder, Holder, or Lipschitz continuous?
Does it exhibit even stronger regularity properties like differentiability or an-
alyticity? Is it possible to give upper and lower bounds on the derivative?

Finally, one is interested in the behaviour of the integrated density of states
as the energy variable approaches a spectral boundary. The most studied case
is the infimum of the spectrum, although the behaviour at very high energies,
or at internal spectral edges is of interest, too. Can one give a characteristic
law of the asymptotics of the integrated density of states at the boundaries? Is
it polynomial, is it exponential? Can one specify or estimate the characteristic
exponents?

Of course, the answers to the above questions often depend on the type
of random operator one is considering. Thus one my also ask: How do the
parameters entering the model influence the abovementioned features? Is there
a universal behaviour or some phase transition phenomenon?

We used above the term random Schrodinger operator although this termi-
nology refers to just one instance among many types of equivariant Hamiltonians
in various geometric settings for which the integrated density of states may
be defined. A substantial body of papers is devoted to operators acting on
combinatorial graphs, the simplest being the integer lattice Z“. Others consider
operators acting on L?(R?), which includes Schrédinger operators. For models
on R?, one may require a R? or a Z-equivariance condition. In the latter case,
there is still a discrete structure present in the random operator, albeit it acts
on continuous space. All settings mentioned so far concern the spaces 74 or R,
and thus Euclidean geometry. Going beyond these, there are interesting related
models on covering manifolds, finitely generated groups, as well as combinatorial
and metric graphs with a quasi-transitive structure.

In the remainder of the preface we describe briefly the potential audience
of the book, the recommended prerequisites, the approach taken to present
the material, the selection of topics and the structure of the text.

The aim of the text is to give researchers interested in the subject of
random Schrodinger operators an overview of known results and methods.
Specialists may find it useful as a guide to further reading. The subject matter
of the book draws on various mathematical disciplines. For that reason it was
not possible to include all the background material, but the reader can find
detailed descriptions of the relevant facts using the references to textbooks
and monographs. Thus, the text should be accessible to graduate students
who have a working knowledge of selfadjoint operators and quadratic forms,
possibly from a course on linear operators in Hilbert space or an advanced
functional analysis class. For students without this background any one of the
following books is recommended as a reading companion: [18, 19] by Akhiezer
and Glazman, [47] by Birman and Solomyak, [110] by Davies, [494] or [495]
by Weidmann, or [497] by Werner, the last two references being in German.
The reader will find the relevant material also in the treatises [140, 141, 142]
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by Dunford and Schwartz, [239] by Kato, or [407, 408, 409, 410] by Reed and
Simon. For the reader who wants to know more about the physical background
of the models discussed here we recommend the monographs [53, 145, 340, 312,
143] where properties of disordered systems are discussed from the point of
view of theoretical physics.

As already mentioned, the integrated density of states can be defined in
various geometric settings and for operators with various equivariance types.
If one aims at discussing all such models in a text, one could treat them
subsequently one by one, or order the text according to various results and
properties and discuss each time all models. One could also first develop a
general approach which covers all models, and prove theorems on an abstract
level. Although all these seem viable options, here we choose a different and
more modest way: We consider just one model in detail and refer in remarks
to sources in the literature where the proof for other variants may be found.
More precisely, we concentrate here on operators on a continuous configuration
space with a discrete group structure. The most important example is the
alloy-type model, a Z%-ergodic operator acting on L2(R%), but operators on
Riemannian manifolds with non-abelian group actions are also considered.

While most of the relevant aspects of the spectral theory of random
Schrodinger operators figure in the text, the presentation is centred around
the integrated density of states. A broader view is taken in the monographs
[81] by Carmona and Lacroix and [389] by Pastur and Figotin which describe
the state of the art at the beginning of the 1990s. There are several other text
of a survey nature on the subject from the second half of the 1980s, including
the introductory article [247] by Kirsch, a section on random Jacobi matrices
in [102] by Cycon, Froese, Kirsch and Simon, and the Lifshitz memorial issue
[335]. In recent years there have been two more monographs treating related
topics. The theory of Anderson localisation for random Schrodinger operators
is exposed in detail in [458] by Stollmann. Many features of the spectral dis-
tribution function in the context of geometry, group theory and K-theory are
discussed in Liick’s book [346].

Let us mention a few recent overview articles which discuss certain as-
pects of the theory covered only marginally in the present book. A survey of
localisation results for one-dimensional random models is provided in [459] by
Stolz. A detailed account of R%-ergodic random Schrédinger operators, which
model amorphous media, is given by Leschke, Miiller and Warzel in [331]. The
present text emphasises the construction of the integrated density of states
and its continuity properties, while its asymptotic behaviour at the infimum
of the spectrum is discussed only in remarks. An overview of the results de-
voted to the last mentioned topic can be found in the recent [259] by Kirsch
and Metzger. There also spectral properties of random surface models are
discussed. We mentioned above that it is possible to introduce the integrated
density of states in a general, abstract framework applicable to various types
of equivariant operators and geometric settings. Such an approach is taken
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for instance in [328], which covers e.g. Hamiltonians on Euclidean space and
lattices, on covering manifolds, Delone sets, and on percolation graphs.

Of course, there are many other excellent sources in the literature not
mentioned here in the preface. We hope to have them adequately quoted in
the main text.

Here is a sketch of the contents and the structure of the book: The intro-
duction explains how one arrives at random Schriédinger operators starting
from the quantum mechanical theory of disordered solids. There we also fix
frequently used notation, recall basic facts about selfadjoint operators, and
define our models. Finally, the introduction explains the relation between
spectral and transport properties of Schrodinger operators as well as the no-
tion of spectral fluctuation boundaries.

The second chapter presents two alternative proofs of the approximation
of the integrated density of states by its finite volume analoga. One of the
approaches is general enough to be applicable to random Schrédinger and
Laplace-Beltrami operators on manifolds.

The third chapter explains the relevance of Wegner estimates and regu-
larity properties of the integrated density of states for other aspects of the
theory of random Schrédinger operators. A prominent example would be the
use of a Wegner bound in the multiscale proof of localisation.

The last two chapters present each a proof of Wegner’s estimate for the
alloy type or continuum Anderson model on L?(R?). The reason to present two
different methods is that each of them has its own advantages when applied to
models exhibiting various non-trivial features. We consider alloy type models
with long-range or negative correlations, as well as singular and non-monotone
dependence on the coupling constants. Several remarks are devoted to similar
results for operators on graphs and manifolds mentioned above. Finally, an
appendix is devoted to some facts from the theory of the spectral shift function
which are used in the main text. More details can be found in the table of
contents.

The present text is a revised version of the thesis [486] prepared for the
habilitation at the Department of Mathematics of the Technische Universitat
Chemnitz, which in turn is based on [483]. W. Konig, P. Stollmann, and
S. Teufel have kindly accepted the request of the Department to act as referees
of the thesis and I would like to thank them at this occasion. The material
presented here draws to a large extent on joint work with colleagues: I have
greatly profited from discussions with T. Antunovi¢, D. Borisov, M. Gruber,
M. Helm, D. Hundertmark, R. Killip, W. Kirsch, S. Kondej, V. Kostrykin,
D. Lenz, P. Miiller, S. Nakamura, N. Peyerimhoff, O. Post and P. Stollmann
and enjoyed working with them. This work has been made possible through
the financial support of the Deutsche Forschungsgemeinschaft. I thank the
staff of Springer in charge of the LNM series for their flexibility and efficiency
in the course of the preparation of the manuscript.

Technical University Chemnitz, Germany Tvan Veselié
September, 2007
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1

Random Operators

1.1 Physical Background

Random Schrédinger operators are used as models of disordered solids within
the framework of quantum mechanics.

A macroscopic solid consists of an order of magnitude of 102 of nuclei and
electrons. The resulting Hamiltonian taking into account all interactions is
highly complicated. To arrive at a Schrédinger operator which can be studied
in some detail one neglects the electron-electron interaction and treats the
nuclei in the infinite mass approximation. Thus one arrives at an one-electron
Schrodinger operator with an external potential due to the electric forces
between the electron and the nuclei, which are assumed to be fixed in space.

In the case that the nuclei are arranged periodically on a lattice, the po-
tential energy of the electron is a periodic function of the space variable.

On the other hand, the electron could be moving in an amorphous medium,
in which case there is no large group of symmetries of the Hamiltonian. How-
ever, from the physical point of view it is reasonable to assume that the local
structure of the medium will be translation invariant on average. This means
that we consider the potential which the electron experiences as a particular
realisation of a random process and assume stationarity with respect to some
group of translations. Moreover, physical intuition suggests to assume that
the local properties of the medium in two regions far apart (on the micro-
scopic scale) are approximately independent from each other. Therefore the
stochastic process describing the potential should have a correlation function
which decays to zero, or — more generally — should be ergodic.

There are interesting models which lie between the two extreme cases of
lattice-periodic and amorphous media. They still have an underlying lattice
structure which is, however, modified by disorder. Probably the best studied
Hamiltonian with this properties is the alloy type model. We leave its precise
definition for the next section and introduce here a special case on the intuitive
level. Consider first the potential
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Vol(z) == Z ug(w, x)

kezd

Each k corresponds to a nucleus sitting on a lattice point. The function ug (w, -)
describes the atomic or nuclear potential at the site k and depends on the ran-
dom parameter w which models the different realisations of the configuration
of the nuclei. If there is only one type of atom present, which has a spheri-
cally symmetric potential, all the uy(w,-) are the same, and V,, is periodic.
Now assume that there are two kinds a and b of atoms present, which have
spherically symmetric atomic potentials of the same shape, but which differ
in their nuclear charge numbers g, and g.
In this case the potential looks like

V,(z) = Z qau(r — k) + Z gpu(x — k)

k occupied by a k occupied by b

If the two sorts of atoms are arranged on the lattice in a regular pattern, this
again gives rise to a periodic potential.

However, there are physically interesting situations (e.g. binary alloys)
where the type of atom sitting on site &k is random, for example obeying the
law

P{k is occupied by atom a} = P, P{k is occupied by atom b} =1 — P

with some P €]0, 1[. Here P{. .. } denotes the probability of an event. If we fur-
thermore assume that the above probabilities are independent at each site and
the parameter P is the same for all k, we arrive at the continuum Bernoulli-
Anderson potential

Vo(z) = qu(w) u(r — k)
k

Here qx(w) € {qa, @}, k € Z¢ denotes a collection of independent, identically
distributed Bernoulli random variables and u is some atomic potential.

This model is a prototype which has motivated much research in the
physics and mathematics literature, a part of which we will review in the
present work.

1.2 Model and Notation

We introduce here, respectively recall, basic notions on LP spaces, selfadjoint
operators in general and Schrédinger operators in particular, and specify the
model Hamiltonian which will be studied throughout the text. We suppose
that the reader is acquainted with the theory of selfadjoint operators in Hilbert
space. In the Preface one can find a list of monographs which provide the
necessary background of this theory.
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Let us start with some mathematical notation. The symbols R,Z, N, N
denote the set of reals, the set of integers, the set of natural numbers, and
the set of non-negative integers, respectively. For a set A C B we denote by
A¢ := B\ A its complement. A measurable subset of R? will be often denoted
by A, and if there is a sequence of such sets its members will be denoted
Ay, ..., A, ... The symbol |A| is used for the Lebesgue measure of A. We
write |z| for the norm of € R?, while the norm of a vector f in a function
space is denoted by || f|.

The Hilbert space of (equivalence classes of) measurable functions on A
which are square integrable with respect to Lebesgue measure is denoted by
L2(A). Similarly, LP(A) with p > 0 stands for the Banach space of measurable
functions f such that |f|P is integrable, while L>°(A) is the set of measurable
functions which are essentially bounded with respect to Lebesgue measure.
The space of sequences {a, }nen such that |a,|P is summable is denoted by
¢P(N). Note that the case p €]0, 1] is included in our notation. In our context
we will often choose the exponent p dependent on the dimension of the config-
uration space. In the following we denote by p(d) any number in [1, co[ which

satisfies
> 2 ifd<3
d)< — = 1.1
p(){>d/2 ifd>4 (L)

For A C R? open, the symbols C(A),C>(A) stand for the continuous, respec-
tively smooth, functions on A. The subscript . in C.(A), C2°(A), LP(A) means
that we consider only those functions which have compact support in A. In
the sequel we will often consider potentials from the class of functions which
are uniformly locally in LP. More precisely, f is in the set of uniformly locally
LP-functions, denoted by L (R%), if and only if there is a constant C'

unif,loc
such that for each y € R?
[ erdasc
le—yl<1

The infimum over all such constants C' equals by definition |||} i 10 Fi-
nally, we introduce Sobolev spaces W2 of order k. For A ¢ R? open, a
function f € L%(A) is in W*2(A) if all its partial derivatives up to order
k exist in the sense of distributions and are elements of L?(A). Obviously,
C>(A) is a subset of W*2(A). Its closure (with respect to the canonical norm
of W52(A)) is denoted by W,2(A).

Let A denote the Laplacian on R?. If we choose its operator domain D(A)
to be the Sobolev space W22(R9), it becomes a selfadjoint operator. The
restriction of A to an open true subset A C R? becomes selfadjoint only if we
specify appropriate boundary conditions (b.c.). Dirichlet b.c. are defined in
Remark 2.2.3. For the definition of Neumann and periodic b.c. see for instance
[408].
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Let A, B be two densely defined symmetric operators on a Hilbert space

H, whose norm we denote by || - ||. The associated scalar product we denoted

by <.,.>. We say that B is (relatively) A-bounded if the domains obey the

inclusion D(A) C D(B) and there are finite constants a and ¢, such that for
all f € D(A)

IBfIl < allAfll + call £ (1.2)

The infimum over all a such that the estimate holds with some ¢, is called
relative bound (of B with respect to A). If B is A-bounded with relative
bound zero, we call it infinitesimally A-bounded. Let A be selfadjoint, and B
symmetric and relatively A-bounded with relative bound smaller than one.
Then the operator sum A + B on the domain D(A) is selfadjoint by the
Kato-Rellich Theorem, see e.g. Sect. X.2 in [407]. We will apply this result to
the sum of the negative Laplacian and a potential. A multiplication operator
by a function V e L .. (R?) is infinitesimally A-bounded if p = p(d),
cf. Theorem XIII1.96 in [408]. Moreover, the constant ¢, in (1.2) depends only
on ||V ||p, unit,loc. Thus the sum H := —A 4+ V is selfadjoint on W22(R%). In a
similar way it is possible to introduce the notion of relative form-boundedness.
Here we consider A which is selfadjoint and bounded below. Denote by D(Q 1)
its quadratic form domain. A symmetric operator B is said to be (relatively)
A-form bounded if the quadratic form domains obey the inclusion D(Q4) C
D(Qp) and there are finite constants a, C, such that

(¢, B¢)| < a(¢, Ag) + Ca(o, ) (1.3)

The relative A-form bound of B is the infimum of all a which satisfy (1.3).
See Sect. VI.1.7 in [239] for more details.

Before we introduce random operators we want to fix notation concern-
ing some terminology in probability theory. The triple (2, Bq,[P) stands
for a probability space with associated o-algebra and probability measure,
while E{...} denotes the expectation value with respect to P. A collection
T;: 0 — Q,5 € J of measure preserving transformations is called ergodic if
all measurable sets in {2 which are invariant under the action of all Tj,j € J
have measure zero or one.

Definition 1.2.1. Let p = p(d) be as in (1.1), u € LP(R?) and q1: Q@ — R,
k € Z* a sequence of bounded, independent, identically distributed random
variables, called coupling constants. Then the family of multiplication opera-
tors given by the stochastic process

Vo(@) = D an(w)ulz — k) (14)

kezd

1s called alloy type potential. The function u is called single site potential. Let
Hy := —A+ Ve be a periodic Schridinger operator with Vyer € Lﬁmfyloc(]Rd).
The family of operators
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H,=Hy+V,, weq (1.5)

1s called alloy type model.

The distribution measure of the random variable qo will be called single
site distribution and denoted by p. If not stated otherwise, in the sequel we
assume that p s absolutely continuous with respect to the Lebesgue measure
and has a bounded density. The density function is denoted by f.

Due to our assumptions on the boundedness of the coupling constants, for
each a > 0 there is a constant ¢, such that for all w and all ¥ € D(A)

Vot ll < all Ayl +call$lls 1Voerdll < all Al + callb]

In particular Hy and all H, are selfadjoint on the operator domain of A. It
will be of importance to us that the constant ¢, may be chosen independently
of the random parameter w.

Remark 1.2.2. (a) In several sections we study Hamiltonians as in Definition
1.2.1, but where some of the hypotheses on the single site potential or
the coupling constants are relaxed. More precisely, we will consider single
site potentials with non-compact support and coupling constants which are
unbounded, correlated, or do not have a bounded density.

(b) If the coupling constants are not bounded, one has to impose some
moment condition to make sure that the alloy type model still makes sense.
The main difference (to the bounded case) is that for w in a set ' C Q2 of full
measure the operator H, will be (essentially) selfadjoint, however this may
fail to hold for w in the complement Q2 \ ©'. See for example [255, 256, 258]
for more details.

(c) There is a group of measure preserving transformations T}, k € Z% on

(Q, Bo,P) such that (1.4) obeys
Vo(z — k) = Vrw(z)

In other words, the stochastic process V: 2 x R — R is stationary with
respect to translations by vectors in Z%. Moreover, the group T, k € Z% acts
ergodically on €2, therefore we call V an Z%-ergodic potential.

To see that the above statements are true we pass over to the canonical
probability space 2 = Xz« R, equipped with the product measure P :=
®pegd 1. Now the stochastic process {7y }reza, defined by mi(w) = wy. for all
k € Z% has the same finite dimensional distributions as {qi}s. It is easily
seen that the transformations (T (w)) ;j i= wj—k are measure preserving and
that the group (Tj)rez« acts ergodically on Q. See Sect. 3 in [247] or Sect. 1.1
in [389] for more details.

Using the stochastic process {m}x the alloy type potential can be writ-
ten as

Vo(x) = Z wi u(x — k) (1.6)
kezd
We will use notations (1.4) and (1.6) without distinction in the sequel.
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Abstracting the properties of stationarity and ergodicity we define general
random potentials and operators with a Z%-ergodic structure.

Definition 1.2.3. Let V: Q x RY — R be a stochastic process such that for
almost all w € § the realisation of the potential obeys V,, € L{:mfﬁlOC(Rd),
p = p(d) and additionally E{||V,xallh} < oo, where A is a unit cube. Let
Ty, k € Z% be a group of measure preserving transformations acting ergodically
on (2, Ba,P) such that

Vo(z — k) = Vpo(x)

Then we call {V,,}., a (Z-ergodic) random potential and {H,}. with H,, =
~A +V, a (Z%ergodic) random operator.

The restriction of H,, to an open subset A will be denoted by H? if we
impose Dirichlet boundary conditions and by HMY in the case of Neumann
b.c. While we will be mainly concerned with Z%-ergodic operators we will give
some comments as asides on their counterparts which are ergodic with respect
to the group R The overview [331] is devoted to such models that model
amorphous media. Insight in the research on almost-periodic operators can be
obtained for instance in the papers [431, 432, 32, 40], the literature quoted on
page 9, the monographs [102, 389], and the references therein.

Remark 1.2.4. All Z%-ergodic potentials can be represented in a form which
resembles alloy type potentials. In fact, for such V: 2 x R? — R there exists
a sequence fi, k € Z¢ of random variables on ( taking values in the separable
Banach space LP(R?) such that V can be written as

V(@)= ) fulw,z — k). (1.7)

kezd

This representation is of interest because it ensures that after passing to an
equivalent probability space and stochastic process one may assume that the
sigma algebra on 2 is countably generated. See [245] and Remark 2.8 in [328]
for more information.

1.3 Transport Properties and Spectral Types

The main interest in the study of random operators is to understand the
transport properties of the materials they model. In the particular case of
the quantum mechanical Hamiltonian of an electron in a disordered solid the
electric conductance properties are the principal object of interest.
The Hamiltonian governs the equation of motion, i.e. the time dependent
Schrédinger equation
Np(t)

ot - —1H,y(t) (1.8)
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The time evolution of the vector v (¢) in Hilbert space describes the movement
of the electron. Since we chose the space representation in the Schrodinger
picture, we can think of ¥(t) as a wave packet which evolves in time. The
square of its absolute value | (t,-)|?> € L'(R?) is a probability density. More
precisely, fA [4(t, z)|?dx is the probability to find the electron in the set ACR?
at time ¢. We will be only concerned with Hamiltonians H, which are time
independent. In this case the solution to the equation (1.8) is given by ¥(t) =
e~ tH4(0) where 1(0) denotes the initial condition at time 0.

For a given initial state 1(0) supported in a compact set A C R? one
would like to know whether for large times the function 1 (t) stays (essentially)
supported near A, or moves away to infinity. In the first case one speaks of a
bound state, since it remains localised near its original support for all times.
The other extreme case would be that (t) leaves any compact region in
R? (and never comes back) as time goes to infinity. Such a state is called a
scattering or extended state. By the RAGE theorem it is possible to relate
the dynamical properties of states just described to the spectral properties of
the Hamiltonian. Roughly speaking, bound states correspond to pure point
spectrum and scattering states to (absolutely) continuous spectrum.

For a more precise formulation we assume that the Schrédinger operator H
satisfies the following local compactness property: If xp is the characteristic
function of an arbitrary ball B = Bgr(x) C R% and P(I) the spectral projection
of H associated to a bounded interval I C R, then the operator xgP(I) is
compact. Under this condition a vector v is in the subspace associated to the
continuous spectrum of H if and only if for arbitrary Br(x)

1 /T
lim —/ dt/ [(t, z)|?dx =0 (1.9)
T—oo T J_7 Br(z)

Here we used the notation (¢, z) = (e *H4)(x). A vector 1 satisfying (1.9)
is called a scattering state in time mean. Under the same local compactness
assumption, a vector 1 is in the subspace associated to the pure point spec-
trum of H if and only if for any € > 0 these exists a radius R = R(1, ) such
that
sup/ lp(t,x)|]> <e (1.10)
teR JRI\ By (0)
For a broader discussion consult for instance [409, 102, 458, 496].

The above relation to the dynamical properties of states motivates the sys-
tematic study of spectral features of the Schréodinger operators appearing in
the time evolution equation (1.8). If a random Schrodinger operator exhibits
almost surely only pure point spectrum in an energy region one speaks of
Anderson or spectral localisation. The name goes back to Anderson’s seminal
work [20]. This property has been established for a variety of random mod-
els. In most of those cases one can additionally prove that the correspond-
ing eigenfunctions decay exponentially in configuration space, a phenomenon
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called ezponential (spectral) localisation. The situation is different for ran-
dom potentials with long range correlations, where sometimes only power-law
decay of the eigenfunctions has been established [263, 170, 500].

If an energy interval contains almost surely only pure point spectrum, we
call it localisation interval. An eigenfunction of H, which decays exponentially
is called an exponentially localised eigenstate. The region or point in space
where the localised state has its highest amplitude will be called localisation
centre (we will not need a mathematically precise definition of this notion).

However, it turns out that the spectrum provides only a rough view on
the dynamical properties of the quantum mechanical system. A more detailed
understanding can be obtained by studying the time evolution of the mo-
ments of the position operators. This led to a formulation of several criteria
of dynamical localisation. One possible characterisation of this phenomenon,
namely strong dynamical localisation in Hilbert-Schmidt topology means that
for all ¢ > 0

IE{ sup X172 (L) P (D) x| }<oo (1.11)
Iflle <1 B3

Here P, (I) denotes the spectral projection onto the energy interval I associ-
ated to the operator H,, || - | s denotes the Hilbert-Schmidt norm, K C R¢
is any compact set, and |X| denotes the operator of multiplication with the
function |x|. For the interpretation of (1.11) as non-spreading of wave-packets
one chooses f(y) = e ®. Dynamical localisation (1.11) implies in partic-
ular that the random Hamiltonian H,, exhibits spectral localisation in I.
In [414] it was first pointed out that, in general, it is important to distin-
guish between dynamical and spectral localisation. The derivation of various
forms of dynamical localisation using the multiscale analysis can be found in
(183, 107, 186, 187, 188, 190], while a proof of the same fact based on the
fractional moment method is the content of the papers [6, 60]. Actually, dy-
namical localisation has first been proven for discrete Schrodinger operators
using the latter method in [9, 4, 7, 11]. In [414, 111, 235] examples are dis-
cussed where spectral localisation occurs, but certain dynamical criteria for
localisation are not satisfied.

For the operators discussed in the present volume these distinctions are not
crucial. In the case of the alloy type model, to which we devote most attention,
spectral and dynamical localisation coincide, cf. [107, 190]. In the sequel we
mean by localisation that the considered operator exhibits in a certain energy
interval only pure point spectrum, and that the corresponding eigenfunctions
decay sufficiently fast.

Since we are dealing not just with a single Hamiltonian, but with a whole
family of them, we have to say something on how the spectral properties
depend on the parameter w describing the randomness: many properties of the
spectrum of an operator pertaining to the family {H,}., hold almost surely,
i.e. for w in a set such that its complement has measure zero in 2. This is at



