E Wlindows 3.1

Programmer’s Reference

Volume 2
Functions

2 Windows 3.

Programmer's Reference

Volume 2
Fumctions

PUBLISHED BY

Microsoft Press

A Division of Microsott Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright ©1987-1992 by Microsoft Corporation. All rights reserved.

Information in this document 1s subject to change without notice and does not represent a commitment on the part of Microsolt
Corporation. The software. which inciudes information contained in any datapases. described in this document s furnished under
a license agreement or nondisclosure agreement and may be used or copied only 1n accordance with the terms ot char agrecment

It 1s against the law 1o copy the software except as specifically allowed in the hicense or nondisclosure agreement. No part of this
manual may be reproduced tn any rorm or bv any means. electronic or mechanical. inciuding photocopving and recording. tor
any purpose without the express written permission of Microsott Corporation.

Library ot Congress Cataloging-in-Publication Data
Microsoft Windows programmer’s reference.
p. m.
Includes indexes.
Contents: v. [. Overview -- v. 2. Funcuions -- v. 3 Messages.
structures, macros -- v. 4. Resouices.
ISBN i-535615-453-3 1v. |1 -- ISBN §i-55615-463-1 (v ;. -- ISBN
1-35615-464-X (v 3). - ISBN i-35615-494-} (v. 4)
I Microsott Windows (Computer program) L. Microsolt
Corporation.
QAT76.76.W56M532 19492
005.43--de20 41-34199
c1p

Printed and bound in the United States ol America.

1234567 R9YMLML 765 432

Distributed to the book trade :n Canada by Macmiilan of Canada. a division of Canada Publishing Corporation.
Distributed 1o the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Lid.. Harmondsworth. Middlesex. England
Penguin Books Australia Lid.. Ringwood. Vicloria. Australia
Penguin Books N.Z. Ltd.. 182-190 Wairau Road. Auckland 10. New Zealand

British Cataloging-in-Publication Data available.

Copyright 91981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica. Palatuno, New Century Schoolbook. Times.
and Times Roman typefont data 1s the property ot Linetype or its licensors.
Arial and Times New Roman tonts. Copyright ©1991 Monotype Corporation PLC. All rights reserved.

Adobe® and PostScript® are registered trademarks of Adobe Systems. Inc. Apple® Macintosn® and TrueType* are registered trade-
marks ol Apple Computer, [nc. PANOSE * i 4 trademark of ElseWare Corporation, Epson® and FX* are registered trademarks of
Epson America, fnc. Hewlett-Packard4 HP LaserJets und PCL*® are rezistered irademarks of Hewlett-Packard Companv. intel® i~ g
registered trademark and 1486 ™ is a trademark of Intet Corporation. AT® and IBM* are registered trademarks ol International
Business Machines Corporation. Helveticas New Century Schoolbook ¥ Palatmo’: Times * and Times Roman® are registered trade-
marks of Linotype AG andjor ats subsidiaries. CodeView# Microsott® MS ¥ MS-DOS © aad QuickC™ are regisiered rrademarks and
QuickBasic™ and Windows ™ are trademarks ol Microsoft Corporation. Arial® and Times New Roman™ are registered irademarks
of Monotype Corporation PLC. Nokia* 1s a registercd trademark of Nokia Corporanion. Okidata” v a regastered trademark ot Oks
America. [nc. Ohvetti® 1s a registered trademark ot Ing C. Olivetn.

The Symbol fonts provided with Windows version * | are based on the CG Times tont. a product oi AGFA Compugraphic Division
ot Auta Corporation,

U S, Paient No. 4974159

Document No. PC28916-0492

Introduction

The Microsoft® Windows™ 3.1 operating system is a single-user system for per-
sonal computers. Applications that run with this operating system use functions in
the Windows applications programming interface (APD. This manual describes
the API functions in alphabetic order, including each function’s purpose, the ver-
sion of Windows in which it first appeared. and the function’s syntax. parameters,
and possible return values. Many function descriptions also contain additional in
formation and simple code examples that illustrate how the function can be used to
carry out simple tasks,

How to Use This Manual

For most of the functions described in this manual, the syntax is given in C-
language format. In your C-language source files, the function name must be
spelled exactly as given in syntax and the parameters must be used in the order
given in synlax.

The Windows API uses many types, structures, and constants that are not part of
standard C language. Thesc items, designed for Windows, are defined in the
Windows C-language header files. Although there are many Windows header
files. the majority of API functions, structures, and messages are defined in the
WINDOWS H header file. You can use these items in your Windows application
by placing an #include directive specifying WINDOWS H at the heginning of
your C-language source file.

In this manual, i a function is not defined in WINDOWS_ H, its appropriate header
file is included in the first line of syntax. If no header file is listed. you can assume
the function is defined in WINDOWS H.

Note You will find a list of the appropriate module and library for each Windows
function in the Microsoft Windows Programmer’s Reference, Volume 1. A list of
the types used in the Windows API. with a brief description of each, is provided in
the Microsoft Windows Programmer's Reference. Volume 3.

vi Microsoft Windows Programmer’s Reference

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention Meaning

Bold text Denotes a term or character to be typed literally, such as a resource-
definition statement or function name (MENU or CreateWindow),
a Microsoft MS-DOS® command, or a command-line option
(/nod). You must type these terms exactly as shown.

ltalic text Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X, Y) requires you
to substitute values for the X and ¥ parameters.

[] Enclose optional parameters.

| Separates an eithgr/or choice.

Specifies that the preceding item: may be repeated.
BEGIN Represents an omitted portion of a sample application.

END
In addition, certain text conventions are used to help you understand this material:

Convention Meaning

SMALL CAPITALS Indicate the names of keys, key sequences, and key
combinations—for example, ALT+SPACEBAR.

FULL CAPITALS Indicate filenames and paths, most type and structure names
(which are also bold), and constants.

monospace Sets off code examples and shows syntax spacing.

Contents

Introduction.................

How to Use This Manual....cq.ccumuinusicmmssisnssmmssims s i i
Document CONVENTIONSoooiiiiieeee oo eee e e e e e ee e

Alphabetic Reference

..

AbortProc 1

AbortDoc

int AbortDoc(hdc)

[3.1]

HDC hdc; /¥ handle of device context L

Parameters

Return Value

Comments

See Also

The AbortDoc function terminates the current print job and erases everything
drawn since the last call to the StartDoc function. This function replaces the
ABORTDOC printer escape for Windows version 3.1.

hdc
Identifies the device context for the print job.

The return value is greater than or equal to zero if the function is successful. Other-
wise, it is less than zero.

Applications should call the AbortDoc function to terminate a print job because of
an error or if the user chooses to cancel the job. To end a successful print job, an
application should use the EndDoc function. '

If Print Manager was used to start the print job, calling the AbortDoc function
erases the entire spool job—the printer receives nothing. If Print Manager was not
used (o start the print job, the data may have been sent to the printer before Abort-
Doc was called. In this case. the printer driver would have reset the printer (when
possible) and closed the print job.

EndDoc, SetAbortProc, StartDoc

AbortProc |

E3

BOOL CALLBACK AbortProc(hdc, error)
HDC hdc; /* handle of device context =/
int error; /* error value */

Parameters

The AbortProc function is an application-defined callback function that is called
when a print job is to be canceled during spooling.

hdc

Identifies the device context.

error
Specifies whether an error has occurred. This parameter is zero if no error has
occurred; it is SP_OUTOFDISK if Print Manager is currently out of disk space

2 AccessResource

and more disk space will become available if the application waits. If this
parameter is SP_OUTOFDISK, the application need not cancel the print job. If
it does not cancel the job, it must yield to Print Manager by calling the Peek-
Message or GetMessage function.

Return Value The callback function should return TRUE to continue the print jOb or FALSE to
cancel the print job.

Comments An application installs this callback function by calling the SetAbortProc func-
tion. AbertProc is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the ap-
plication’s module-definition file.

See Also GetMessage, PeekMessage, SetAbortProc

AccessResource | [21]

int AccessResource(hinst, hrsrc)
HINSTANCE hinst; /* handle of module with resource */
HRSRC Arsre; /*handle of resource */

The AccessResource function opens the given executable file and moves the file
pointer to the beginning of the given resource.

Parameters hinst
Identifies the instance of the module whose executable file contains the re-
source.
hrsrc
Identifies the desired resource. This handle should be created by using the
FindResource function.

Return Value The return value is the handle of the resource file if the function is successful.
Otherwise, it is —1.

Comments The AccessResource function supplies an MS-DOS file handle that can be used in
subsequent file-read ealls to lodd the resource. The file is opened for reading only.

Applications that use this function must close the resource file by calling the
_Iclose function after reading the resource. AccessResource can exhaust available
MS-DOS file handles and cause errors if the opened file is not closed after the re-
source is accessed. ’

AddAtom 3

See Also

In general, the LoadResource and LockResource functions are preferred. These
functions will access the resource more quickly if several resources are being read,
because Windows maintains a file-handle cache for accessing executable files.
However, each call to AccessResource requires that a new handle be opened to
the executable file.

You should not use AccessResource to access executable files that are installed in
ROM on a ROM-based system, since there are no disk files associated with the ex-
ecutable file; in such a case, a file handle cannot be returned.

FindResource, _ Iclose, I.oadResource, LockResource

AddAtom

[2x]

ATOM AddAtom(/pszName)

LPCSTR IpszName;

Parameters

Return Value

Comments

Example

/* address of string to add */

The AddAtom function adds a character string to the local atom table and returns
a unique value identifying the string.

IpszName
Points to the null-terminated character string to be added to the table.

The return value specifies the newly created atom if the function is successful.
Otherwise, it is zero.

The AddAtom function stores no more (han one copy of a given string in the atom
table. If the string is already in the table, the function returns the existing atom
value and increments (increases by one) the string’s reference count.

The MAKEINTATOM macro can be used to convert a word value into a string
that can be added to the atom table by using the AddAtom function.

The atom values returned by AddAtom are in the range 0xC000 through OxFFFF.

Atoms are case-insensitive.

The following example uses the AddAtom function to add the string “This is an
atom” to the local atom table:

4 AddFontResource

ATOM at;
char szMsg[80];

at = AddAtom("This is an atom");

if (at == 0)
MessageBox(hwnd, "AddAtom failed"™, ", MB ICONSTOP);
else |

wsprintf(szMsg, "AddAtom returned %u", at);
MessageBox(hwnd, szMsg, "", MB 0K);

See Also DeleteAtom, FindAtom, GetAtomName

AddFontResource (2]

int AddFontResource(/pszFilename)
LPCSTR IpszFilename; /* address of tilename ¥

The AddFontResource function adds a font resource to the Windows font table.
Any application can then use the tont.

Parameters IpszFilename
Points to a character string that names the font resource file or that contains a
handle of a loaded module. If this parameter points to a font resource filename,
it must be a valid MS-DOS filename, including an extension, and the string
must be null-terminated. The system passes this string to the LoadLibrary
function if the font resource must be loaded.

Return Value The return value specifies the number of fonts added if the function is successful.
Otherwise, it is zero.

Comments Any application that adds or removes fonts from the Windows font table should
send a WM_FONTCHANGE message to all top-level windows in the system by
using the SendMessage function with the Awnd parameter set 1o OxFFFF.

When tont resources added by using AddFontResource are no longer needed,
you should remove them by using the RemoveFontResource function.

Example The following example uses the AddFontResource function to add a font re-
source from a file, notities other applications by using the SendMessage function,
then removes the tont resource by using the RemoveFontResource function:

AdjustWindowRect 5

AddtontResource("tontres.fon");
SendMessage (HWND BROADCAST, WM [ONTCHANGL, 0, 0);

/* Work with Lhe tont. =/

it (RemovetontRescurce("fontres.fon")) |
SendMessaqge (HWND BROADCAST, WM HONICHANGE, @, ©);
return TRUE;

}

else
return FALSE;

See Also Loadlibrary, RemoveFontResource, SendMessage

AdjustWindowRect [2x]

void AdjustWindowRect(/prc, dwStyle, fMenic)

RECT FAR* [prc; /* address of client-rectangle structure *f
DWORD divsnyle; /% window styles &
BOOL fMenu; /* mienu-present tlag */

The AdjustWindowRect function computes the required size of the window
rectangle based on the desired client-rectangle size. The window rectangle can
then be passed to the CreateWindow function to create a window whose client
area is the desired size.

Parameters Ipre
Points to a RECT structure that contains the coordinates of the client rectangle.
The RECT structure has the following form: '

typedef struct LagRECT | /* rc +/
int left;
int top;
int right;
inl bottom;
| RECT;

For a tull description of this structure, see the Microsoft Windows Program-
mer's Reference, Volume 3.

dwStyle
Specifies the window styles of the window whose chient rectangle is to be con
verted.

fMenu
Specities whether the window has a menu.

6 AdjustWindowRectEx

Return Value This function does not return a value.

Comments A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRect does not take titles and borders into account when comput-
ing the size of the client area. For window styles that include titles and borders, ap-
plications must add the title and border sizes after calling AdjustWindowRect.
This function also does not take the extra rows into account when a menu bar
wraps to two or more rows.

&

See Also AdjustWindowRectEx. CreateWindowEx

AdjustWindowRectEx 31]

void AdjustWindowRectEx(/pre, dwStyle, fMenu, dwExStyle)

RECT FAR* iprc; /* address of client-rectangle structure *
DWORD dwStvle; /* window styles */
BOOL. /fMenu; /* menu-present flag */
DWORD dwExStyle; /* extended style . */

The AdjustWindowRectEx functicn computes the required size of the rectangle
of a window with extended style based on the desired client-rectangle size. The
window rectangle can then be passed (o the CreateWindowEx function to create
a window whose client area is the desired size.

Parameters Ipre
Points to a RECT structure that contains the coordinates of the client rectangle.

The RECT structure has the following form:

typedef struct tagRECT (/* rc */
int left;
int top;
int right;
int bottom;
} RECT;

FFor a full description of this structure. see the Microsoft Windows Program-
mer’s Reference, Volume 3.

dwStyle
Specifies the window styles of the window whose client rectangle is to be con-
verted.

AllocDiskSpace

7

fMenu

Specifies whether the window has a menu.

dwExStyle
Specifies the extended style of the window being created.

Return Value This function does not return a value.

Comments A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRectEx does not take titles and borders into account when com-
puting the size of the client area. For window styles that include titles and borders,

applications must add the title and border sizes after calling AdjustWindow-

RectEx. This function also does not take the extra rows into account when a menu

bar wraps to two or more rows.

See Also AdjustWindowRect, CreateWindowEx

AllocDiskSpace

#include <stress.h>

int AllocDiskSpace(/Left, uDrive)
long ILeft; /* number of bytes left available */
UINT uDrive; /* disk partition */

=]

The AllocDiskSpace function creates a tile that is large enough to ensure that the
specified amount of space or less is available on the specified disk partition. The

file, called STRESS.EAT, is created in the root directory of the disk partition

If STRESS.EAT already exists when AllocDiskSpace is called, the function de-

letes it and creates a new one.

Parameters ILeft
Specifies the number of bytes to leave available on the disk.

uDrive
Specifies the disk partition on which to create the STRESS.EAT file. This
parameter must be one of the following values:

8 AllocDStoCSAlias

\ alue Meaning
FDS WIN Creates the file on the Windows partition.
DS _CUR Creates the file on the current partition

FDS_TEMP Creates the file on the partition that contains the TEMP directory.

Return Value The return value is greater than 7evo if the function is successful; it is zero if the
function could not create a file: or it is —1 if at least one of the parameters is in-
vahd

Comments In two situations. the amount of free space left on the disk may be less than the

number of bytes specitied in the /Left parameter: when the amount of free space
on the disk is less than the number in /L eft when an application calls Alloc-
IYiskSpace. or when the value of /1.eft is not an exact multiple of the disk cluster
§ize

The UnAllocDiskSpace function deletes the file created by AllocDiskSpace.

See Also UnAllocDiskSpace

AliocDStoCSAlias [30]

UINT AllocDStoCSAlias(uSelector)
UINT uSelector; /* data-segment selector */

The AllocDStoCSAlias function accepts a data-segment selector and returns a
code-segment selcctor that can be used to execute code in the data segment.

Parameters uSelector
Specities the data-segment selector.

Return Value The return value is the code-segment selector corresponding to the data-segment
selector if the function is successful. Otherwise, it is zero,

Comments The application should not free the new selector by calling the FreeSelector func-
tion. Windows will free the selector when the application terminates.

In protected mode. attempting to execute code directly in a data segment will
caunse a general-protection violation. AllocDStoCSAlias allows an application to
excente code that the application had created in its own stack segment.

AllocFileHandles 9

See Also

Windows does not track segment movements. Consequently, the data segment
must be fixed and nondiscardable; otherwise, the data segment might move, invali-
dating the code-segment selector.

The PrestoChangoSelector function provides another method of obtaining a code
selector corresponding to a data selector,

An application should not use this function unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

FreeSelector, PrestoChangoSelector

AllocFileHandles [31]

#include <stress.h>

int AllocFileHandles(Left)
int Left; /* number of file handles to leave available ¥/

Parameters

Return Value

Comments

See Also

The AllocFileHandles tunction allocates file handles until only the specified nuni-
ber of file handles is available to the current instance of the application. If this or a
smaller number of handles is available when an application calls Allod'lle-
Handles, the function returns immediately.

Before allocating new handles, this function frees any handles previously allocates
by AllocFileHandles.

Left
Specifies the number of file handles to leave available.

The return value is greater than zero it AllocFileHandles successfully allocates at

least one file handle. The return value is zero if fewer than the specified number of
tile handles were available when the application called AllocFileHandles. The re-

turn value is =1 if the Left parameter is negative.

AllocFileHandles will not allocate more than 256 file handles, regardless of the
number available to the application.

The UnAllocFileHandles function frees all file handles previously allocated by
AllocFileHandles.

UnAllocFileHandles

10 AllocGDIMem

AllocGDIMem [31]

#include <stress.h>

BOOL AllocGDIMem(u/l eft)
UINT ul eft: /¥ number of bytes to leave available */

The AllocGDIMem function allocates memory in the graphics device interface
(GO heap until only the specified number of bytes is available. Before making
any n2w memory allocations, this function frees memory previously allocated by
AllocGDIMem

Parameters ulefi
Specifics the amount of memory. in hytes, to leave available in the G heap.

Return Value The retn volue is nonzero if the function is successful. Otherwise. itis zero.
Comments The FreeANGDIMem function frees all memory allocated by AllocGDIMem.
See Also FreeAlIGDIMem

AllocMem [31]

#include <stress.h>

BOOI. AllocMem(dwl efi)
DWORD vl eft: /*<mallest memory allocation */

The AllocMem function allocates global memory until only the specified number
of bytes is available in the global heap. Before making any new memory alloca-
tions. this function frees memory previously allocated by AllocMem.

Parameters dwileft _
Specifies the smallest size, in bytes, of memory allocations to make.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.
Comments “The FreeAllMem function frees all memory allocated by AllocMem.

See Also FreeAllMem

AllocSelector 1

AllocResource [2x]
HGLOBAL AllocResource(hinst, hrsrc, cbResource)
HINSTANCE hinst; /* handle of module containing resource */
HRSRC hrsrc; /* handle of resource */
DWORD cbResource; /* size to allocate, or zero */

The AllocResource function allocates uninitialized memory for the given resource.
Parameters hinst

Return Value

~- . =~ “«
Identities the instance of the module whose executable file contains the re-
source.

hrsrc .
[dentities the desired resource. This handle should have been created by using
the FindResource function.

cbResource
Specifies the size, in bytes, of the memory object to allocate for the resource If
this parameter is zero, Windows allocates enough memory for the specified re-
source.

The return value is the handle of the global memory object if the function is
successful.

See Also FindResource, LoadResource
AllocSelector (30
UINT AllocSelector(uSelector)
UINT uSelector; /* selector to copy or zero */
The AllocSelector function allocates a new selector.
Do not use this function in an appiication unless it ts absolutely necessary, since
its use violates preferred Windows programming practices.
Parameters uSelector

Specifies the selector to return. If this parameter specifies a valid selector, the
function returns a new selector that is an exact copy of the one specified here. If
this parameter is zero, the function returns a new, uninitialized sector.

