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Preface

In June of 2000, a group of 39 mathematicians and graduate students met at
the beautiful Hotel San Michele in Cetraro, Italy. The purpose of this CIME
summer school was to study and investigate the latest results in certain areas
of dynamical systems. The summer school was also dedicated to celebrating
the career of Professor Roberto Conti of the Istituto G. Sansone of the Uni-
versita di Firenze. Professor Conti, now in his 70’s, has been a major force
in developing young researchers working in dynamical systems. In addition,
his own research has been of major importance in the field, in fact a series
of lectures at this summer school was devoted to his recent joint work with
Professor Marcello Galleotti.

This suminer school necessarily focussed on a small number of the many
important recent developments in dynamical systems. In each case the lectur-
ers presented these developments in full historical context.

Professors Conti and Galleotti gave a series of lectures on the classical,
extremely difficult, problem of classifying the orbits of systems of the form

2'(t) = X(z,y), y'(t) =Y(r.y),

with X and Y polynomials. Such systems arise in applications when the com-
plicated functions that represent the driving forces in a dynamical system are
approximated by Taylor Polynomials. Given that X and Y are of a specific
degree, a fundamental open problem in dynamical systems theory is to clas-
sify the possible phase space portraits (orbits). The possible orbits have been
shown to be of amazing complexity. Professors Galleotti and Conti reported
on the progress made for the case when X and Y are polynomials of degree 3,
with some discussion of general results. The problem for degree 3 exhibits all
the difficulties associated with higher degree polynomials. They showed how
an elegant series of transformations and insights can reduce the system to one
of a small number of canonical forms for which, with some assumptions, one
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can classify the possible orbits. Their work constitutes fundamental progress.
and their lectures brought voung researchers completely up to date in this
challenging area.

The lectures of Professor Russell Johnson of the Universita di Firenze dealt
with the application of dynamical system methods to the study of periodic
and quasi-periodic orbits for non-autonomous systems 2/ (1) = f(t..r). x(t)
belonging to a finite or infinite dimensional vector space. Under very minimal
hypotheses, the solutions of an autonomous differential equation define a local
flow or semiflow. If the differential equation is non-autonomous. then the flow
property does not hold, and so one has fewer tools available to study the
solutions of such cquations. However, if one considers a translation-invariant
Sfamily I of non-autonomous differential equations, generated from a given
non-autonomous equation, then (under mild hypotheses) the solutions of the
equations do define a local flow or semiflow (in an extended space). If one
takes account of the fact that a deterministic differential equation disturbed
by a stationary real-noise process generates such a translation-invariant family.
then one has ample motivation to develop a theory of such families.

Professor Johnson's lectures described how several tools from ergodic the-
ory, including Lyapounov exponents and the Osedelec theorem, can be applied
when the family F supports an invariant measure. If I’ carries a compact met-
ric topology. then methods of topological dynamics such as rotation numbers
and almost automorphy can be used to study various problems. In addition.
the basic concept of exponential dichotomy - though initially defined for a
single non-autonomous linear equation - can be adapted to study compact
metric families F.

He showed how these tools can be used to study problems involving nonlin-
ear parabolic PDEs with almost periodic time dependence, the qualitative
theory of random ODESs, the theory of the random Schroedinger operator.
and random bifurcation theory. In fact non-autonomous differential equations
(especially those which depend periodically on time) can be studied using
methods related to those mentioned above but without reference to any fam-
ily F'. Professor Johnson discussed how “dynamical™ methods of this type can
be used to investigate the ground-state problem for the scalar curvature equa-
tion, and the asymptotic behavior of solutions of the Navier-Stokes equations.

The lectures of Professors Shui-Nee Chow (Singapore National University
and Georgia Tech ) and John Mallet-Paret (Brown University) dealt with their
recent work on the dynamics of lattice differential equations (LDE’s), a field in
which they are among the pioneers. These are systems of ordinary differential
equations (with time as the independent variable) with a discrete structure in
space. Such systems occur in electrical circuit theory, materials science, the
theory of chemical reactions, image processing, and biology. The literature
only goes back to about 1987, with the full mathematical development starting
in the 1990’s. Their lectures presented their comprehensive program to study
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such systems from the point of view of, and using the tools of, dynamical
systems.
Lattice differential equations are systems of ordinary differential equations,
generally of infinite order, in which the system coordinates are parameterized
by an underlying spatial lattice A C R”. One example is the discrete Allen-
Cahn equation, obtained by coupling local nonlinear scalar dynamics with a
nearest-neighbor spatial interaction. The one-dimensional system takes the
form

;= a(ujry —2u; +u; ) — fuw). i € 7, (1)

where typically f is a bistable nonlinearity, such as f(u) = —u + u?®, or
f(u) = (u? — 1)(u — a). or even a monostable function such as f(u) = u+ u®.
The coupling coefficient a is real. and of either sign: in any case. the initial
value problem for this equation is well posed in (™ = [>(Z). The PDE limit
corresponds only to the limit o — ~, but their interest is for general a.
Analogous systems in other lattices, for example

Ui = alAu; ;j—f(uwi ;). Auz = Z [ta.p — du; ;). (i.j) € Z2,

la—i|+|b—j|=1

—_—

2)
in the two-dimensional lattice Z2, can be considered. Here A = A* is a dis-
crete Laplacian modeled on a + shaped stencil, although one could also model
such an operator on other stencils, for example A* modeled on a x shaped
stencil. One might also allow nonsymmetric couplings, and also nonlinear cou-
plings, between lattice points. A general feature of higher-dimensional lattice
systems is that the anisotropy and discrete symmetry of the lattice plays a
role in the analysis, in contrast to the case of a PDE such as vy = Au — f(u)
in R? which is rotationally and translation invariant.

Numerical simulations show that LDIE’s can exhibit a rich variety of dy-
namic phenomena, including pattern formation (e.g., spontaneous appearance
of stripes, checks, and other figures, from randomly chosen initial conditions),
traveling waves, and spatial chaos (spatially disordered patterns which are
temporally stable). Their lectures covered:

1. Traveling Waves in Lattices .

2. The Fredholm Alternative Theorem for Nonlocal Equations.

3. Propagation Failure and the Effects of Anisotropy.

4. Stability and Perturbation of Traveling Waves.

As mentioned above, the theoretical discussions were complemented by pre-
sentations of extensive numerical simulations demonstrating the complex be-
havior of solutions to these systems.

Professor Roger Nussbaum of Rutgers University presented a series of lec-
tures on the applications of fixed point theorems to dynamical systems theory.
His lectures focussed on recent applications of the fixed point index (a gen-
eralization of the Leray-Schauder degree) to singular perturbation problems
with delay. His lectures dealt with two topics of recont interest in the theory
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of nonlinear differential-delay equations:

(a) asymptotic behaviour of solutions of differential-delay equations with
state-dependent time lags as a certain singular parameter approaches 0 and
(b) existence and nonexistence of “super-high frequency solutions™ of certain
nonlinear, discontinuous, differential-delay equations.

The model equation for topic (a) was
ex'(t) = f(z(t),z(t — 1)), r:=r(z(t)), (3)

where € > 0 and f and r are given functions. A simple-looking but non-trivial
example of Equation (3) is given by

ex'(t) = —x(t) — kx(t —r), r:= 1+ cx(t), (4)

where € > 0, k > 1, and ¢ > 0. His lectures focussed on how (under appropri-
ate assumptions on f and r) one can prove for (3) and more general equations
the existence of “slowly oscillating periodic solutions”. A basic asymptotic
problem then is this: Suppose that ¢; — 07, that «; is a slowly oscillating
periodic solution of (3) for € = ¢;, and that G; C R? denotes the graph of
;. If (jr : k > 1) is an appropriate subsequence, what can be said about
the limiting shape {2 of the graphs G, as k — oc”? What can be said about
the limiting shape of GG; as j — oc? The topology of convergence here is that
of the Hausdorff metric on compact subsets of R?. He described the theory
that has been developed to answer such questions, and in many cases one
can explicitly determine a unique, nontrivial set {2 and prove that G; — {2
as J — oo. Questions involving the limiting profile 2 lead directly to some
corresponding questions involving analogues of Krein-Rutman theory for non-
linear, noncompact maps of a closed cone in a Banach space into itself. He
discussed such nonlinear Krein-Rutman theorems and mentioned other con-
texts in which they arise.

As a model equation for topic (b) Professor Nussbaum used
2'(t) = —sgn(x(t — 1)) + f(x(t)). (5)

Here sgn(w) = 1 if w > 0, sgn(w) = —1 if w < 0, and sgn(0) = 0; [ is
a Lipschitzian function with [f(z)| < 1 for all x. If 6 : [-1,0] —» R is a
given continuous function, there exists a unique, absolutely continuous func-
tion x : [—1, oc] = R such that x|—1,0) = 0 and r satisfies Equation (5) for
almost all t > 0. Assume either that € is not identically zero or that f(0) # 0.
It has been proved by Akian-Bliman and Nussbaum-Shustin that there exists
T =Ty < oo such that for any interval (¢t — 1, t] with ¢ > T the function
x|(4—1,4) has at most finitely many zeros. In this situation, we say that (5)
has no super-high frequency solutions. For generalizations of Equation (5),
questions about the existence of super-high frequency solutions remain open.
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The approach of Nussbaum-Shustin leads to a class of operators which take
the cone of nonnegative vectors A" in [} (Z) into itself and which are nonexpan-
sive with respect to the [} norm. He discussed this class of operators in some
detail, and indicated the connection to Equation (5) and why these operators
are of interest in their own right.

Virtually all participants attended all of the scheduled lectures and partici-
pated actively in the evening seminars which were held each day. The scientific
atmosphere was invigorating and led to several new potential collaborations.
We would like to express our appreciation to CIME for sponsoring this excit-
ing and worthwhile summer school. We also wish to express our appreciation
to the Hotel San Michele for being such an excellent host. Finally, we thank
our speakers, who made the conference an outstanding experience for all par-
ticipants.

Jack Macki and Pietro Zecca
University of Alberta and Universita di Firenze

CIME's activity is supported by:

Ministero dell’Universita Ricerca Scientifica e Tecnologica, COFIN '99;
Ministero degli Affari Esteri - Direzione Generale per la Promozione e la
Cooperazione - Ufficio V:

Consiglio Nazionale delle Ricerche;

E.U. under the Training and Mobility of Researchers Programme;
UNESCO-ROSTE, Venice Office.
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Lattice Dynamical Systems

Shui-Nee Chow

School of Mathematics,
Georgia Institute of Technology Atlanta, GA 30332-0160, USA
chow@math.gatech.edu

Introduction

The following notes are based on my lectures given at CIME Session on “Dy-
namical Systems” from June 19 to June 26, 2000 in Cetraro (Cosenza). In
Section 1, we study spatially discrete nonlinear diffusion equations and dis-
cuss various phenomenon; in Section 2, we introduce the idea of spatial chaos
by studying Nagumo equation: in Section 3, 4 and 5, we present a general the-
ory for pattern formation and spatial chaos in lattice dynamics systems; finally
in Section 6 and 7, we study the special case of synchronisation phenomena
of lattice systems.

I would like to express my thanks to Professors P. Zecca and J. Macki and
the host of the conference for inviting me to participate in this conference and
making the publication of this note possible. I would also like to express my
gratitude to Ms G. M. Wu, without whose help these notes would not have
been completed. Mimmie, thank you for your patience and hard work.

1 Spatially Discrete Nonlinear Diffusion Equations

1.1 Introduction

In this section we consider spatially discrete nonlinear diffusion equations that
occur as models for binary alloys. These equations are spatially discrete and
are not space discretized partial differential equations. In fact, for some of
the parameter values that we consider there may not exist a well-posed PDE
even in a weak sense. The differential equations we consider are analogous in
form to the Cahn-Hilliard equation (see [27]) and the Cahn-Allen equation
(see [16]). The Cahn-Hilliard equation with Neumann boundary condition is

given by
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uy = A(f(u) — Au), T €2

n-Vu=n-VAu=0. reon (1)

for ¢ > 0 where 2 ¢ RY, N = 1,2, 3 is a bounded domain and f is a “cubic”
nonlinearity, typically f(u) = u* —u. The Cahn-Allen equation with Neumann
boundary conditions is given by

up = —f(u) + £ Au, r el 2)
n-Vu =0, redf .

The Cahn-Hilliard equation models the evolution of a binary alloy after it has
been quenched to a constant temperature. The Cahn-Allen equation models
the motion of the interface between two phases of a binary alloy.

Spatially discrete equations have long been considered in the material
sciences (see [37], [48]). The model considered by Hilbert in [48] is a one-
dimensional model and allows for order-disorder and spinodal decomposition.
There is no restriction on the amplitude of the composition in Hilbert's model.
Our models are for subsets of one- and two- lattices. We have observed spin-
odal decomposition, order-disorder, twinning and the coexistence of up to
three distinct phases. We will present high amplitude equilibrium solutions
for certain model equations.

We will show that spatially discrete diffusion equations on a finite subset of
a lattice can be analyzed in terms of a variational calculus and that the systems
we consider possess a gradient structure and hence have a global attractor.
Our initial task is to set up a discrete variational calculus for discrete nonlinear
diffusion equations. Using the fact that these are gradient systems we are able
to prove that there exists a compact, connected invariant set for a large range
of parameter values that includes the case in which there is no continuum
limit PDE. We present a numerical method that we have implemented on a
massively parallel SIMD machine. Using this efficient algorithm, we are able
to exhibit the pattern formation that occurs for a wide range of parameter
values.

1.2 Spatially Discrete Models

In this section we consider a general class of spatially discrete nonlinear dif-
fusion equations on integer valued subsets of lattices in one- and two- di-
mensions. We then consider specific equations that occur as models for the
evolution of binary alloys. We define what we mean by a subset of a lattice
and its boundary with respect to discrete Laplacian type operators. In this
way we are able to develop a variational calculus for spatially discrete dif-
fusion equations using a discrete Green’s formula that is easy to derive by
considering one-dimensional summation by parts formulas. A general form
for equations is given that, although spatially discrete, are of reaction dif-
fusion and Cahn-Hilliard type. With a boundary-sum boundary condition,
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the spatially discrete Cahn-Hilliard equations conserve mass. For rectangular
boundaries it is shown that these boundary-sum conditions are satisfied with
the discrete analog of periodic and Neumann boundary conditions.

Given a Z~ module for N = 1,2, 3 we wish to construct a finite subset, L,
of this lattice. For N = 1.2.3 we have that n € L is of the form n = (i).n =
(i.7).n = (i.]. L). respectively, where i, j. k are integers. First we construct a
subgroup of Z™ using a set {1 }rep of translations (sce [22]) where D is an
indexing set and 7, € Z" act as generators. An example of such a subgroup
of Z* would be the fact-centered cell where the ni are all permutations of (1).
Here the translations in the subgroup are those n = (i, j, k) for which i+ j+ &
is even and the size of face-centered unit cell is double that of the unit cell for
Z*. This allows us to retain integer components for centered cells. We may
also wish to consider the lattice complexes that are formed by the complement
of a subgroup or the union of some of the cosets of the subgroup with respect
to ZN. We specify L to be the points in a finite subset of this lattice or lattice
complex, i.e., a collection of N-tuples with integer components, a finite subset
of Z".

We now define the boundary and interior of L with respect to the set of
translations {9 }rep. A point € L is in the interior of L if n+n, € L for all
the translations 7. A point 7 € (')L,Tk , the negative boundary with respect
to the translation 7y, if n € L and n — 1 ¢ L. Similarly, a point 7 € OL;]*A
the positive boundary with respect to ny, if n € L and n + ni. ¢ L. We define
the boundary of L to be those i € L such that either n € 9L, or 7 € ()Lm
for some translation 7.

For a one-dimensional discrete Laplacian, we have the following summation
by parts formula.

Theorem 1. 1 (Summation by parts). Given a positive integer M and

A1 M we have

sequences {v( and {w(i)},

M
Z{Al'(i) ~w(i) 4+ Vo(i) - Vw(i)} = =Vo(0) -w(l) + Vo(M) - w(M + 1), (3)

i=1
where Av(i) = v(i +1) = 20(i) +v(i — 1) and Vo(i) = v(i + 1) — v(i).

We define higher dimensional discrete Laplacians as the sum of one-
dimensional discrete Laplacians using the set of translations {n}rep as fol-
lows

Au(n) Z{u n—nk) —2u(n) + uln+ )}, (4)
ke D,
where {1 }rep, is the set of crystallographically equivalent translations. For
point groups with little symmetry, each D; may contain only one element.,
while for point groups with a large degree of symmetry, the corresponding D,
will contain several elements.
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Using the summation of parts formula (3) and the construction (4) of
higher dimensional discrete Laplacian type operators 4A;. we have the following

discrete Green's formula

Theorem 1.2 (Green’s Formula). .

Z Ao(n) - w(n) + Z Viv(n) - Viw(n) (5)
neL neL

=3 { S 0(n = 1) = 200m) + o0 + 1)) - w(n)
keED, ‘el

+ (v(n+ ) —v(n) - (wln +m) - 11'('7))}

Z{ Z () —vln —nr)) - w(n)

keD, nedLly,,

+ ) (4 m) = o) - win + ’lk)} :

r,c()l,,“v

Given L, we consider differential equations that take on a value at each
point n € L. The differential equations are similar in form to the Cahn-Hilliard
equation and the corresponding Cahn-Allen equation. For 77 € L, what we will
call the Spatially Discrete Cahn-Hilliard equation (SDCH) has the form

u(n.t) = Ap(f(u(n.t)) — Aau(n. 1)), (6)

where @ = du/dt, f(u(n,t)) = log((l + u(n,t))/(l — u(n,t))) + ou(n.t) and
Ayp = Z:el,\ a; A, A = Ziela 3;A; where T4 and Iy are indexing sets.
Note that for 0 < —2, f(x) has three unique real roots. In what follows, we
will assume that the o; and /3; are real constants, but o; = a,(n) or 5; = 3;(n),
the weights as functions of position, may also be useful in some applications.
For n € L, the Spatially Discrete Cahn-Allen equation (SDCA) has the form

u(n,t) = Aqu(n,t) — flu(n,t)) . (7)

For both equations, we consider the following boundary conditions

Z «; Z { - Z (u(n,t) —u(n —nx,t))

1€1 4 keD, nedL,,

+ Z (u(n +np.t) — (11(7/.f))} =0 . (8)

neLy,

Additionally, for the SDCH equation, we employ the boundary condition



