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PREFACE : o ,_ S

A glance at the Table of Contentb will reveal that most of the toplcs
which usually fall under the heading “Advanced Caleulus” are treated in
this book. The author’s aim has been to provide a development of the
sub;ect matter which is honest, rigorous, up-to-date, and, at the same time,

‘not too pedantic, Most of the ““hard’’ theorems which are exther omitted

or treated rather skimpily in many texts on advanced calculus are proved
here with great care. Some of them are ordinarily considered too difficult

- for a standard course in advanced caleulus but too elementary for a course

in'real or complex function theory. With the inelusion of these theorems,

the book helps to fill the gap between elementary calculus andLadvanced

courses in analysis.. More important than this, it introduces the reader to
some of the abstract thmkmg that pervades modern mathematics.
Some of the features to be found in. the book include: :
A chapter on abstract set theory which contains a precise formulatxon
_of the function concept. o2l
Point set topology in n—dxmensmnal Euchdean space.
A satisfactory treatment of differentials.
An elementary discussion of connectedness.
An extensive treatment of the Riemann-Stieltjes integral, mcludmg
complex integration and a discussion of the winding number.
A development, of Jordan content and outer Lebesgue measure.

-

- A proof of Green’s theorem for plane regions bounded:by a.rbltrary

rectifiable Jordan curves.

A careful treatment of surfaces and surface mtegrals

A thorough discussion of the interchange of limit processes.

A chapter on Fourier series and Fourier integrals, including the ,
Fourier integral theorem, the convolution theorem for Fourier trans-
forms and the complex inversion formula for Laplace transforms.

An introduction to the theory of functions of a complex variable.
‘There is ample material here for a year’s course, but many parts can-’

éasily be omitted without disturbing the continuity of the presentation,
Nearly 500 exercises are included; many of these are de.mgned to 1llustrat/e

~_the general theorv or to show where it can break down.

For various reasons, one of which is simply lack of space, there is a
minimum of emphasis on applications and physical motivation i in this book.
It i isa faxrly easy matter for a lecturer to give a leisurely heunst.:c d'scussxon
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T i : x PREFACE

that motivates a d1fﬁcult concept, but in many instances the very same
discussion may" appear somewhat ridiculous when set down in print.
Furthermore, the approach to motivation is largely a matter of personal
taste and hence is best provided in the form “of classroom lectures as the
individual instructor sees fit to introduce if.

A clear understanding of the basic concepts of calculus is mdlqpensable,
for anyone who wishes to learn about more advanced concepis in analysis.
Therefore it is hoped that this book, although designed primarily for
mathematicians, may also be of interest to students of the physical and
engineering sciences. :

While preparing the manuscript the author has had the best assistance

, one could wish for. He is particularly grateful to Professors Paul R.
Halmos of the University of Chicago and M. E. Munroe ‘of the University
of+Illinois. Their thorough criticism of the preliminary version of the
manuseript had a profound effect on the final form of the book. Special
thanks are also due to Dr. Basil Gordon of the California Institute of
Technology, who read the final draft and pointed out a number of errors.

; Through the generosxty of the California Institute, the expert services of
Miss Rosemarie Stampfel were made available for typlng of the manuseript.
“The author also owes much to the students of Caltech, who prov1ded
the original incentive for this work. E
 Finally, thanks are due to the Addlson-Wesley Pubhshmg Company,
first, for their sincere interest in producing a book of this kind, and
second; for the excellent help and coopera,tlon which- they have constantly
proﬁered -

Tom M, APoSTOL
January, 195_7



CHAPTER 1. THE REAL AND COMPLEX ’\IUMBER SysTEMS

1-1
12
1-3
1-4
1-5
1-6
127
18
1-9
1-10
1-11
1-12
1-13
114
-1-15
1-16

| le17
1-18
1-19
1-20

\

CHArTER 2. SOME Bastc Notions oF Ser THEORY

2-1
2-2
2-3
9
2-5
2-6
2-7
2-8
2-9°
2-10
211
2-12

~

CONTENTS

Introduction 1 %% !

Arithmetical plopertles of real numbers
Order properties of redl numbers :
Geometrical representation of real numbers ’

‘Decimal representation of real numbers . . ..

Rational numbers. o vl S DaiE L gAY
Some 1rrat;0}1‘al numbers 4

Some fundamental inequalities ' .

Infimum and supremum .. o .o,

Complex numbers . (L
Geometric representation of camplex numbers

The imeginary unit ‘' . . .’ L

Absolute value-of & complex mzmber

Impossikility of ordering the comnlev numbers
Complex exponentials .

The argument of a complex number
Integral powers and roots of complex nu,mberSs

Complex logarithms . . . % R AT
Complex POWETS (. . S NG

Complex sines and cosmes

}'

Fundamentals of set theory
Notations .0 Vi 15 s dess ikt
Ordered pairs . . s
Cartesian product of two sets
Relations and {unctions in the plane
Genteral definition of relation .
General definition of function
One-to-one functions and inverses e gl el
Composgite functions sy 4 foves g dbfos Ly
Sequences

The nuniber. of elements m a set AL PO
Setalgebra = " 2 e AL e Wik

Joy

Craprer 3, ELEMENTS oF Poinr Sgr THRORY

3-1
v3-2
3-3
34
3-5
3-6
LEB=T
3-8

Introduction
Intervals and open sets in E'1 ARt
The structure of open sets in Ky .- -

‘Accumulation points and the Bolzanc-Welemtrass theorem in E 1

Closed sets in B; . . AT
Extensions to higher dlmensmns S
The Heine-Borel covering theorem
Compactness SR

vii

= : e
SO=ICTHPH WM e -

ok ot ot ok’
OB b~

-
(=1 32N

et
(0o e )



viii.- 2% 4 : CONTENTS

3-® Infinity in the real number system : ST SRR TSN B
3-10 Infinity in the complexplane . . . . . . . . . . b7
CuaPrER 4. TuE LiMmit Concerr aAND CONTINUITY IR
4-1. The definition of limit . | R et e RS e SR e B
4-2 Some basic theorems on lxmxts O R SRS R
4-3 The Canchy'dotdition t%: % [ #1d Ve OGN LSl anspia diak
44 Algebriofdimittg. o u o Sl Lol bR el bR ok g7
4-5 -Continuity . . Rl e gue AR By LB
4-6 Examples of contmuous functlons TN NG ke (BD)
4-7 Functions continuous on open or closed sets Spb e T )
4-8 Functions contmuous on:oompaet 818, . ki i TR e A7
4-9 Topologxcal mappings . . e W SRR R
410 Propertics of real-valued contmuous functlons (G RS e
'4~11 Uniform‘continuity. . b B TSGR ARSI
4-12 Discontinuities of real-valued functmna S T G IR O S
4-13 Monotonic funetions . STl
4-14 Necessary and sufficient oondmons for contmnity gt ies) 9
CHAPTER 5. DIFFEBENTIATION OF thc'nons OF :
ONE REAL VA.BIABLE ey A _f. T R s e s R B
5-1 ' Introduction . . s pee et Sl RN e ik T A o e
5-2 - Definition of derivative . . . ESEL TR DRI S G I RN ing
5-3 . Algebra of derivatives:v ' (0, iy pels aen o aie e o N Rg
5-4 The chain rule . . Aot e VN e
5-5 One—sxdeq derivatives and mﬁnite denvatwes RS IR R
5-6 Functions with nonzero derivative . . ..., ! . . . ., o1
5-7 Functions with zero derivative Rl U S L
5-8 Rolle’s theorem . ' AN e
5-9 The Mean Value Theorem of dxﬁerentml calcu]us Siste e 98
5-10 Intermediate yalue theorem for derivatives . ... . . . 04
5-11 Taylor’s formula with remamder L S N e IR NG
CHAPTER 6. DIFFERENTIATION oF I‘UNCTIONs or SEVERAL VARlABLES 103
‘' 7 6-1 Introduction . . . i BT A R S 103
6-2 The directional derivative . A I te Lol o e (1
6-3 Differentials of functions of one real vanablé ST S A (1)
6-4 . Differentials of functions of several variables . . . . . . 107
6-5 The gradient vector. . ’ R o 1
6-6 Differentials of composite functxons and the cham rule PN R b
6-7 Cauchy’s invariant rule . . SR 7 |
6-8 The Mean Value Theorem for functlons of several vanables R g
6-9 A sufficient condition for existence of the dlfferentml 2ehbs ke <118
6-10 Partial darivatives of higher order .’ . Skl o 14120
6-11 Taylor’s formula for functions of several vanables Ala Rt 198
6-12 Drfferengmtlon of functions of & complex variable . . . .. 125
6-13 The Cauchy—Rlemann equatlons Rt R TR R T T O o 0.
CHAPTER 7. APPLICATIONS OF PARTIAL DIFFERENTIATION ripie si i TR
-1 Introduction: . [ ¥ " Uil G e SEE Bt SR e L T R el

7—2Jacob1ans...........‘.....139



CONTENTS A e G <
7-3 Functions with nonzero Jacobian. . '. . . . . . . . 141
7-4 The inverse function theorem ~ . . ., . . . . . . . 144
7-5 The implicit function theorem . . . . . . . . . . 146
7-6 Extremum problems . . AP A g Ve AR
7-7 Sufficient conditions for a lacal extrenhum e e e AR G
7-8 Extremum problems with side conditions . . . . .., . 152

CHAP'LER 8. Funcrions oF BouNDED VARIATION,

RecririaBLE CURVES AND CONNFC’I‘ED Aoy AR RSN 1 1
8%1 Introduction . . S T e b R e
8-2 Properties of monot.omc functlons RSl R R s T R B
8-3 Functions of bounded variation ./ . . . & . . . . . 163
84 Total variation * . RYSaE R SRR
8-5 Continuous functions of bounded vanatlon T R S R R ¥
8-6 Curves . . MO S PR )]
.87 Equivalence of contmuous vecbor-valued functlons RN TR 1
8-8 Dirdcted paths ;.\ % ed S5 i b st Lo et i L R lve

&9 ‘Rectifiable cunves & i ;1o v as 5 Rl Gl i o i 7l I eoied 10 0 S AT B
8-10 Properties of arc length . (i 8 Sl s Re G SR il i 76
B-11- Connectedness. . L. F {5l Gt s dudidneipa ialalipl ol o8 g7
8-12 Gomponenta of &'set . | Ul e e OB e G iU SR
8-13 Regions . .. .. 182
8—-14 Statement of the Jordan curve theorem and related result& .. 183
CuarreR 9. THEORY OF RIEMANN-STIELTJES INTEGRATION' R AT 1) )
9-1 Introduction . el Bioa o (T TR MU R S et e R
9-2 Notations . SRR R L
9-3 The definition of the Rlemann—StleItJeQ’ mtegral SO IR [
9-4 Linearity propertxes Sy P AP T (1
9-5 Integration by parts My e 1 215 s N RO
..9-6 Change of variable in.a Rxemann—St\elt)es mt-z,gral o Lm I 06
9-7 - Reduction to & Riemaann integral. . . . . . . ... . 197
9-8 Step functions as mtegra.tors i . 198
9-9 Monotonically inereasing mtegrators Upper and IOWer mtegmls 202
9-10 Riemann’s condition . . ; 5 o i 08
9-11 Integrators of bounded vana,tlon Y . 207

9-12 Sufficient conditions for existence of Rlems:nn-Stleltjes mtegmls 211
9-13 Necessary conditions for existence of Riemann-Stieltjes integrals 212

9-14 Mean Value Theorems for Riemann-Stieltjes mtegrals SV ey 218
9-15 The integral as a function of the interval . . Ve Tl
9-16 Change of variable in a Riemann integral . . TR A 1 6
9-17 Second Mean Value Theorem for Riemann mtegrals TR R b f
9-18 Riemann-Stieltjes integrals dependmg on a parameter . . . 217
9-19 Differentiation under the integralsign . . . . . . . . 219
- 9-20 Interchanging the order of 1ntegrat19n oty Do R T e
9-21 Oscillation of a function . . PR S i M R
9-22 Jordan content of bounded.ets in 1’1 Mo e e
9-23 A necessary and sufficient condition for
integrability in terms of content BT EPARR e R . 7

9-24 Outer Lebesgue measure of subsets of E1 e TN S

/

~



Xy CONTENTS

9-25 /A necessary and sufficient condition for

integrability in terms of measure . . . . ... . . . 230
9-26 Complex-valued Rxemann-Stleltjes mtegrals | S R RS G s L ]
9-27 Contour integrals . . AN TGN g w232
9-28 The winding number . N SR e e e D RE
9-29 Onentatlon of rectifiable Jordan curves g T R B RES e S (1
CuarrEr 10. MULTIPLF INTEGﬁALs AND LiINE INTEGRALS R R e e
10-1 | Introduction . o i e AR
, 10-2 !'The meagure (or content) of elementary sets in E LT W e TR |
'10-3 Riemann intégration of bounded functions - - Pt
defined on intervals in E, . . L R S I SR R
\ 104 Jordan content of bounded sets in E,. RTER o T IR ORI e LIS 173
10-5 Necessary and sufficient conditions for ‘
the existence of multiple integrals , . B S abR
10-6 Evaluation of a multiple integral by repeated mtegrabion o260
10-7 Multiple integration over more generalsets.: . ./ . . . . 268
10-8 Mean Value Theorem for multiple integrals = . . . . . . 289
10-9 Change of variable in a multiple integral e i B, At dllt (b )
10-16 Line integrals . . 2 N R A 2T
10-11 Line integrals with respect to arc length 15 s e R AT
10-12 The line integral of a gradient, .~ . ... o0 oo 0oL 279
10-13 CGreen’s thecrem for rectangles PR .. 283
10-14 Green’s.theorem for regions boundéd by rectlﬁable Ji ordan curves 284
10-15 Independeénce ofi the/pa,th o S A R O S RN L )
CHA.PTER L1 VECTOR VANATYSIB X1 e, aei ol o sl i e 6 304
11-1 . Introduction . . ' RIS e gt LR AR e T
'1-2 Linear mdependence and bases in E,, T Ao B BBl (1
11-3 - Geometric representation of vectorsin Eg . . . . . . . 306
11-4 Geometric interpretation of the dot product in Bz « . . . 308
11~ The cross product of vectors in\E;:, PR SRR S S e G o D 0 1§
11-6 .The scalar triple product . . L e NS e S e 300
11~7 Derivatives of vector-valued functlons : AReer i8S TR 2
11-8 Elementary differential geometry of space curves, ., . . . . 314
119 < The tahgent' Vector of  cufvey \. " Berianl St hes it Ll <81
1110 Normal vectors, curva.ture,‘ ¥orsion 1 e R i L S
11-11 Vector fields . . L N Rt S R SRR L Ca B R OB S
11-12 The gradient field in B : IR pbs ot e G e T
11-13 The eurl of a vector field in E3 S LTI e o SRS B R
)'11-14 The divergence of a vector ieldin £, . . . .. . . . . 3822
1115 The Laplaeian operatpr , .7, "0 < 00 L S TR LT T 324
“11-16 Surfaces . . . i e S S B
11-17 Explicit representatmn of a parametrm surface bl Rl e e
11-18 Area of a\pajametric surface . . . . . . . .. ‘. 330
11-19 The sum of paggmetric surfaces” . ', . 5700 8 0T 381
1120 Surface integreala: . o NE R ot R R e R LA T R
11-21.The theorem of Stokes’ - 7.0 Lt naee B e e o 834
11-22 Orientation of surfaces . : oA R R T YRR
11-23 Gauss’ theorem (the dxvergence tI\eorem) et il el 1)

11-24 Coordinate transformatxonb gl TR S S e el

|



CONTENTS ;i bl

Crarrer 12. TmeITE ShRIES AND INFIN!TE Pnonvc'rs SRR . 353
12-1 Introduction = . ik ool oo B R 1 e (RS
12-2  Convergent and dxvergent sequences : é ol Vs 058
12-3 . Limit superior and limit inferior of a real—valued sequeuce St 35S
12-4 Monotonic sequences of real numbers” *. . . . . . | 355
12-5 Infinite series . : . i s T R
12-6 Inserting and. rernovmg parentheses W T W e SR S BT
12-7" ' Alternating series . . = ./ SRS S S R R A B T
12-8 Absolute and conditional convergence AESARE SO SRR e e )
12-G  Real and i imaginary parts of a complex series . . .’/ . . 360
12-10 Tests for convergence of series with positive terms e I T
12-11 The ratio test and the Toob et bl " R sl AR 68
12-12 Dirichlet’s test and Abel's test . . . . .\ . ... _ 354
12-13 Rearrangementsiof series /v .1 i kS ANCEE Al G Hirigem)
12-14 Double BEGUBTICRS | . Nl 2 RS e R BN R
12-15 Double series . e e B S A e R T R

.'12-16 Multiplication of series . Sl R e ) R T T e SR g

V' 12-17 Ceslirogutnmnabiliby’” » .. = Sl 2ciin 1o 7t s iBeioa et S Sahe

e 32-18 Infimte praduets 11 (o7 0 BATER BRERIC L anrratais de 8 Xoag

Cuaprer 13. SequEncEs oF Funcrions .0 L - . . 390
13-1 Introduction, . . ol AL SN
13-2 Examples of sequences of real-valued funct:ons R e O
13-3 Definition of uniform convergence . . . ... . . . . 392

13-4 An application, to double,sequences T S b e e £ 0
13-5 Uniform convergence and continyity . . S e e s SO
13-6 The Cauchy condition for umforzx convergence b W SRS (G
13-7 Uniform convergence of infinite series . . . . | . . ., 395
13-8 A space:ﬁllmg curve NGy R e S e U e 1
.13-9 ' An application to repeated serles 48 e SOR
13-10 Uniform convergence and Rlemann-Stle.tJes mtegra.tlon i U860
13-11 Uniform convergence and differentiation . . e 1)
13-12 ‘Sufficient conditions for uniform convergence of a senes At~
13-13 Bounded convergence. Arzela/s dheOrdr s T A o e T 405
-13-14 Mean. convergence : R AT R R
13-15. Power series’ . . sluaalen Koot Sl SRS PR SRR e (1

, 13-16 Multiplication of power series . . L ST e AN b SO )
13-17 The substitution theoremd . - . ¢ .. 0 i 1414
13-18Réal-power geries ', (/7 f1 1 qra s e vl s SR ST
1310 Bernstein’s theorem ' =¥ Moo o oo U USRI RESIG L T
18-20 The binofialsefide.” ' Y j#8 10 Mponiyuaain i T L A8
1321 Ahel's limit thebrem . ' 00 0L © A SRy e et g

1:13-22 Fanber's theorem® [¥H0 19 LI IR GG P e ool 5ol ey

CHAPTER 14. IMPROPER RIEMANN-STIELTJES IN’I‘EGRALS LS e 90
141 Introduction = . . ' b Lol RABR e v S
14-2 Infinite Rlemann-StleltJes mtegra.ls IR e el g e R e
14-3 Tests for convergence of infinite integrals . . . . . . . 431
14-4 Infinite series and infinite integrals ©. .~~. . . . . . | 434

14-5 TImproper integrals of the second kind! X e R RS



“.f

e

'.!“

LR i /

14-8 Uniform convergence of improper mtegrals P o e e AT
14-7 Propemes of functions defined by improper mtegrals R e )
14-8 Repeated improper integrals . . 446
14-9 Integration of mﬁmte series when 1mproper mtegrals are 1nvolved 451
Craprer 15, FouRrER Srriss AND Fotnumz INnTEGRALS . . ., . 460°
15-1 Igtroduction . . o i s dallrae ALY U080
15-2 Orthogonal systems of functxons {io i 460
15-3 The Fourier series of a function relative to an prthonormal system 464
154 Mean-square approxlmatlon ST et b NS el g e s B
15-5 Trigonometric Fourierseries . .. . . . . . . . . ', 468
15-6, The Riemann-Lebesguelemma . . . . . . . . . . 489
156-7 Absolutely integrable funetions . . . . ... . . . . 470
15-8 The Dirichlet integrals. - . . ; 472
' 15-9 An.integral representation for the partml sums of a %‘ouner senes 475
' 15-10 Riemann’s localization theorem . . ool £ A 78
15-11 Sufficient conditions for convergence of a Fourler senes ke 0478
15-12 Cesaro summability of Fourier series = . ». . . .. . . ., 478
15-13 Consequences of Fa;érs theoreng w0 g Vi e SR sk Al R g NG
15-14 Other forms of Fourlermeries . . .. .>. . &+ , . . . 483
15-15- The Fourier integral theorem .- AR e
156-16 The exponential form of the FOurmr mtegral theorem .. . 486
15-17 Integral transforms. . | i SRS el
15-18 Convolutions . . Han S TS kRO
15-19. The convolution theorem for Fourier transforms . . . . . 491
15-20 The Laplace transform . .. SR R
15-21 The inversion formula for Laplace transforms WVZ R EUR R R OR
Craprer 16. CavcHY’S THEOREM AND THE RESmUE CALCULUS . . 509
16-1 Analytic funetions . . T R SRR S 1)
16-2" The Cauchy integral theorem seiian Wi BRI aR
16-3 < Deformation of the contour .. . . . .. . i L 511
164 Cauchy’s integral formula . . . kST Rl
16-5. The mean value of an analytic function onacirde . . Sii.1 B18
16-6 Cauchy’s integral formula for the ;

; derivative of an analytic function . . . . 514
16-7 ' The existence of hxgher derivatives of an a,nalytlc functxon b5 010
16-8 * Power series expansions for analytic functions . . . . . . 516
16-9 Zeros of analytic functions .* . G R R
16-10 The identity theorem for analytic functlons e Lo« 519
16-11 Laurent expansions for functions analytm on an snnulus - l.4. 619
16-12 Isolated singularities . . CTALETT i DO
16-13 The residue of a function at a,n molated smgular pomt <l ar D24
1614/ The Cauchy residue theoram . . TR R 01, §

" 16-15 The difference between the number of zeros and the
: number of poles inside a closed contour . . LT 006
16-16, Evaluation of real-valued integrals by means of resxdues §' 5268
16-17 Apphcatmn of the residue theorem to the o
inversion formula for Laplace ¢ransforms ‘.- . . . . . 529
16-18 One-to-one analytic functions " . L s oy 531
16-19 Conformal mappings - . . % v G L s S 1 532
INDEX OF SPECIAL SYMBOLS . . . o . .0 . o . . b43

‘IN‘DEXI...'J.'....‘...,......v.i.‘.w'



-

Ve ,, : : G
Y CHAPTER 1 |

THE REAL AND COMPi,EX NUMBER SY;STEMS
1-1 Introductlox; The real number system is one of the funa%xjental
oncepts of mathematics. A thorough and exhaustive study of mathe-

matical analysis would have to include a careful definition of what is meant
by a real number, a discussior of how real numbers are constructed (start-

‘ing, for example, with the integers), and a derivation of the principal

properties of real numbers. Although these elements form a very interest-
ing part of the foundations of mathematxds they will not be treated in
detail here. As a matter of fact, in most phases of analysis it is only the
properties of real numbers that concern us, rather than the methods. used
to ‘construct the real number system. Therefore we shall simply list a
set of axioms from which all the propertiesof real numbers can be derived.
For discussions of the methods used to construct real numbers the reader -
should consult the references at the end of this chapter.

We shall assume that, the reader is familiar with most of the properties
of real numbers discussed in the next few pages, as well as some of their
elementary consequences. We shall also assume that the reader has some °
knowledge of the elementary functions of calculus, such as-the trigono-
metrie, exponential,-and logarithmic functions. Although infinite series”
will be treated in detail in a later chapter, a few basic facts about series

" (with“which the reader is probably already familiar from his study of

elementary calculus) will be used in the early part of this chapter.

1-2 Arithmetical properties of real numbers. Given any two real
numbers z and y, we can form their s sum z - y and their product zy, and

these satlsfy the follomng axmms i

{"
Axiom 1 z Fy=y+z2y= yx ; * (commutative laws).

AxxomZ.x+(y+z)—(x+y)+z,' s g
Voz(yz) = (3??/)2 : (assoctative laws). s
Axion . a(y +2) = oy 22 " (distribuive law). b

Axtom 4. Given any two real numbers z and ¥, there exists a real number '
- zsuchi that z + z = y. This zis'denoted by y — z; the number
z — 2 is dénoted by 0. (It can be proved that'0 is mdépendent

ofx) We write -—xforO -z

1

\



2 THE REAL AND COMPLEX NUMBER SYSTEMS
a5 iy
Axiom 5. There exists at least one real number z = 0. If z and y are two
real numbers with # = 0,.th®n there exists a real number 2z
.such that zz = y. ‘This 2 is denoted by y/z; the number x/z is
denoted by 1 and can be shown to be independent of z. We
write z7! for 1/z if 25 0.

/

From these axioms we can derive all the usual laws of arithmetic; for

example, —(—2) =2, ¢™) ' =g, —@ Y =y—2 z—y=
z + (—y), ete. (For a mare detailed explanation'see Ref. 14.)

1-3 Order properties of real numbers. ‘We also have a relation < which

establishes an ordering among the real numbers and which satisfies the

{following axioms: :

Axrtom 6. Exactly one of the relations z°= y, @ < Y, > y holds. ‘
‘Note/ z > ¥ means the same thingasy <z
| AXtom 7. If z < y, then for every z we have ' + 2z < g).-‘r 2.
Axrom 8. Ifx > Oand y > 0, then 2y > 0. +
Axiom 9. Ifiz > yand y > z, then x > 2z i ;
. From these axioms we can derive the usual rules for operating with
inequalities.” For example, if we have # <'y, theh zz < yz if z > 0,
whereas zz > yz if 2 < 0. Also, ifz>y>0andz>w> 0, then
&% > yw. (For a complete discussion of these rules see Ref. 1-1.) A tenth
axiom i$ given in Section 1-9. ol
K, L . v { .
Nore. The symbolism z < y is used as’an abbreviation for the state-
ment: “c < yorz = y.” Thus we have 2 < 3 since 2. <3,and2 £ 2

since 2:== 2. The symbol > is similarly used.

' 1-4 Geometrical representation of real numbers. The real numbers can
be represented geometrically as points on a line (the real azis). A point
is selected to represent 0 and another point to represent 1, and these points
determine the scale. Then each point.on the real axis corresponds to one
and only one real number and, conversely, each real number is repre-
v sented by a single point. . g Lo A8 ; : A

1-5 Decimal représentation of real numbers. Every real number z has*
& decimal expansion of the form ‘ i

{

$=ZEN'G]_G:2"‘G1;"',

\ \ ”) ® i w !

where N is either 0 or a positive integer and each a; is one of the digits
5 \ /‘ i :

N i §
Py )



RATIONAL NUMBERS i Tt R

; frofn 0to 9. The notation N -@iag: @y +"is really an abbreviation for
the infinite series A :

Nk ab1(10)‘1 o a2(10)"’ Yk an(19)"”

‘When N 'is 0 and all' th«, a; are equal (say, to a), then the infinite series
becomes a geometric series with ratio 1 /10 and sum

-a( 110\ _ a_

3 1—1/ 10/,

Iﬁ)a = 9, this series has the sum 1, whxch means that the number 1 has
the two decxmal ex%ansmns '

*
! b

1 = 1.000... = 0.999....

More generaily, if & number has a decimal expansion which ends in zeros,

Mor example, 1/8 = 0.125000..., then this number can also be written as a

decimal expansion which ends in nines by decreasing the last nonzero digit

by one un,“vs Thus we have 1/8 = 0.124999.... Except for situations like

this, decimal expansions are unique. ; AL
& i ;

1-6 Rational numbers. Real numbers are classified into two main types,
rational and irrational. Rational numbers are those real numbers which
are the quotient of two integers; for example, 1/2, 7/5, =5. "Irrational
numbers are those real numbers which are not ratlonal for example, ,
V2,6 Rati onal and irrational numbers can also be d1st1ngmshed by their
decimal repre;ent&twns A rational number has a décimaal expansion
which’ eventually repeats itself: 1/2 = 0.50,2/3 = 0.6, 1/7 = 0.142858,
13/22= 0.5909, 1/8 = 0.1249. That portlon of "the decimal which is
underStored is understood to be repeated indefinitely in each case. (The
‘reader Should have no difficulty in showing that such- repetitions must
always occur when a rational number is written in its decimal expansion.)
Conversely, every repeating decimal represents a rational number. This
fact-is not so obviqus, but it can easily be proved by observing that a
decimal which repeats forms a geometric series of the form %

a+b(i+r-!—72+--?+r”el—---);x
where a, b, and r are rational, » being some power of 1/10. ‘Suéh a series
has the sim @ + b/(1 — 7), which is rational. Asa case in point, take the
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repeating declma.l MRV 314. We can write th1s out as &’ senes as foHows

10 + 14(107%) - 14(10-") + 14(1077) + -

= E + 14(107%){1 + (107?) + (107‘),+.-«= -]

= +14(10—3)[ J ;’éé

Given two ratzonal numbers, say e and b, their average (a + b)/2 is
also rational. 'Hence between dny two rational numbers there lies another
rational number. It then follows that between any two rational numbers
there must be infinstely many rational numbers [Why ?],. which implies that
if we are given & certain rational number x, we cannot speak 6f the “next

largest” rational number. : W

\

1-7 Some irrational numbers. Ordinarily it is not too easy to show tha,t j
some particular number is irrational. There is rio sunple proof, { or example, -

of the irrationality of e~. However, the irrationality of certain numbers
such as 1/2 and /3 is not tao difficult to establish and in fact we can

easily prove the followmg 8
1-1 TuroreMm. If n is an mteger which s not a perfect Squam then \/—
trrational. %
Proof. Suppose first that 7 ins no square factor >1. We assume

that +/7 is rationa) and obtain a contradiction. Let v/n == a/b where a
and b are integers having no factor in cornmon. Then nb? = a2 and, smce
the left side of this equation is & multiple of n, so t00 is a2, However if a2

is a multiple of n, a itself must be a multlple of n, since n has no sguare
factors >1. (This is easily seen by examining the factorization of \a into

}

its prime factors.) This means that a = cn, Where ¢ is some mteger‘[‘hen :

the equation nb® = a? becomes nb? = ¢?n2, or b2 = ne?. The same -

argument shows that b must also be a multiple of n. Thus.a and b are both
multxples of n, which contradicts the fact that they have no factor in
* common. Thxs completes the proof if #'has no square factor > 1.

If n has a square factor; we can write n = m?k, where k& > 1 and k has
no square factor >1. Then v'n = mv/E; and if /7 were rational, the
number /% would also be rational, contradicting that which was just
“proved. ; e

I8
A dxﬂerent type of argument is needed to prove that the’ number e 18
uratmnal ; '



THM. 1-3] SOME FUNDAMENTAL INEQUALITIES - i 5
1-2 THEOREM. If €® = 14z + 22/21 4+ 23/81 4 <+ - + 2"/nl 4+ + - « :
then the nwmber e is irrational. : i :

Proof. We shall prove that e™! is irrational. The series"i;or ¢ 'is an -
alternating series with terms which decrease steadily in absolute value.
In such an alternating series the error made by stopping at the nth term
‘has the algebraic sign of the first neglected term and is less in absolute value
than the first neglected term. Hence, if s, = X7 o (—1)*/k! we have
the inequality ,

L N i
0<e Sop—1 < (2’0)!’

A

from which we obta,in Y

]

0<@—1l" — o)<y <2

for any integer & 2 17 Now (2k —'1)! sop—q is always an integer. If ¢!

were rational, then we could choose & so large that (2k — 1)! e~ would '

. alsa be an integer. But the las# nequality says that the difference of these
' two integers would be a number between 0 and 3§, which is impossible.
- Thus e™! cannot be rational, and hence ¢ cannot be rational.

i
'

The ancient Greeks were aware of the existence of irrational numbers ag early
as 500 B.c. However, a satisfactory theory of such numbers was not developed
until late in the nineteenth century, at which time three different theories were
introduced by Cantor, Dedekind, and Weierstrass. For an account of the
theories of Dedekind and Cantor and théir equivalence, see Chapter I of E. W,
Hosson, The Theory of Functions of a Real Variable and the Theory of Fourier's
" Serdes. Vol. 1, 3rd ed. Cambridge: University Press, 1027. R Ly

- 1-8 Some fundamental inéqualities. Calculations with inequalities arise
quite frequently in analysis. They are of particular importance in dealing
with thé notion'of absolute value. If z is any real number, then we define
the absolute value of z, denoted by |z, as follows:

lxl—' z i 130,
el i ..

A fundamental inequalit concerning . absolute values is given in the -

following: ; -

1-3 THEOREM. If a > 0, then 1be have the inequality lx| < a if, and only if,
S e <L g f : : ; g T
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Proof. From the definition of 12|, we have the inequality —|z| < z < jz],"
since z = |z| or z = —|z|. If we assume that |z| < a, then we can write
—a < —|2].< z < |z| £ aand thus half of the theorem is proved. Con-
verselv,letusassume-a <z £ a. Thenifz > 0,wehave |z| = z £ a,
whereas if 2 < 0, we have [z] = —z < a. In either case we have [z| < a
and tife theorem is proved »

-

=

As an important consequence we have _
1-4 ToeorEm. |z +y| < 2] + Jyl. : : h
/

Proof. We have —|z| < z £ |z| and —Jy| < y £ |y|. Addition gives

us —(jz| + ) € z+ y £ |z] + |y], and from Themem -3 we conclude‘
that |z 4+ y| < |zl + |y

Since |-—z| = ||, Theorem 1-4 also yields the mequahty g

=Y S el Ll :
Replacing =z by ¥ — #, 'this can also be written in the form
le — 4| > ol = iy
and by mduct;xon we can prove the generahzatmns

[ e O S S I + !zzl b A o A
and ; : 4
[ey 4 22 4 oo 4+ x| 2 |24 —-}rczi b lznl.

bk
¢ We shall now derive & very ugeful result known as the C’auchy-Schwarz
inequality.

1-5 THEOREM. (C’auchy—Schwarz mequaltty) If aj, ..., agand bl, il g
 are arhitrary real numbers, we have bt 2 i
) e
\ k=1 fow=1 k=1 3

Proof. A sum of squares can never be negative. Hence we have
¢ . '
2 ez +b)? 20

. k=1
for évery real z., This inequality can be written in the form

N



DEF. 1-7] . INFIMUM AND SUPREMUM \ (5

. A2 +2Bz4+C >0,

Where v i : P X : /
! 2 & y Y e 1
: i 2
! A=Za£, B=Zakb;,, O’=Zbk.
% o k=1 ‘ k=1 / Fml ’

/{ \
\

IfA > 0, put z = ~—B/A to obtain B? — AC <.0, which is the desired
inequality. If 4 = 0, the proof is trivial.

\ . Nore.. For an alternative proof ‘of ihis theorem, see Exercise 115,

2
e

1-9 Infimum and supremum. Let § denote a collection of real numbers.
The notation z &S means that the real number z is in the collection S,
and we write z £ S to ¥ndicate that z is not in 8. “

The notation {z [ z satisfies P} will be used to designate the collectipn
of all real numbers = which satisfy the property P. i ,

1-6 DrrinirioN. Let A be a set of real numbers.. I f there 1s a.real number

* % such that a' e A implies a < =, then x i3 called an upper bound for the

set A and we say that A s bounded above. {Lower bound is similarly
defined.] = 5 { }

.+ 1-7 DermNrion. Let 4 be a set of reql numbers bounded above. Suppose
there is a real number x satisfying the following two conditions:
(i) z is an upper bound for A, and
(i) of y is any upper bound for A, then z < y.

Such a number x i3 called a least upper bound, or a supremum, of the
set A. [The abbreviation lub is used for least upper bound and the
abbreviation sup is used for supremum, The concept of greatest lower
bound (glb), or infimum’ (inf), is similarly defined if 4 is bounded
below. *] j e

It is easy to see that the sup and inf of a set are uniquely determined,
whenever they exist (see Exercise 1-10). ' -

* OQur final axiom for the real number system invoives the notion of
supremuin: :

L v ¢ (
Axyom 10. If A-is a nonempty set of real numbers which is bounded above,
then 4 has a supremum.

* We shall use the term “supremum?” rather than “least upner bound” and the
term “infimum” rather than “greatest lower bound.” ;

-
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