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Preface

Although pressure swing adsorption (PSA) is not a new process, it is really
only during the past decade that such processes have achieved widespread
commercial acceptance as the technology of choice for more than a few
rather specific applications. Nowadays, however, PSA processes are widely
used, on a very large scale, for hydrogen recovery and air separation, and
further important applications such as recovery of methane from landfill gas
and production of carbon dioxide appear to be imminent. The suggestion for
a book on this subject came from Attilio Bisio, to whom we are also indebted
for his continuing support and encouragement and for many helpful com-
ments on the draft manuscript.

The authors also wish to acknowledge the seminal contributions of two
pioneers of this field, the late Frank B. Hill and Robert L. Pigford. Several of
their publications are cited in the present text, but their influence is far
broader than the citations alone would suggest. Suffice it to say that much of
the book would not have been written without their encouragement and the
‘stimulus provided by their widsom and insight. Several graduate students and
post-doctorals have made major contributions, most of which are recognized
explicitly by citations. However, they, as well as others whose work may not
have been directly referenced, also contributed in a very real way by helping
the authors, through discussion and argument, to understand and appreciate
some of the subtleties of PSA systems. It would be remiss not to mention by
name M. M. Hassan, J. C. Kayser, N. S. Raghavan, and H. S. Shin.

This book is not intended as an exhaustive review of PSA technology,
neither is it a design manual. Rather, we have attempted to present a
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coherent general account of both the technology and the underlying theory.
Perhaps more than in other processes the rational design and optimization of
a pressure swing adsorption process requires a reasonably detailed mathe-
matical model. The two commonly used approaches to PSA modeling,
equilibrium theory, and dynamic numerical simulation are discussed in some
detail in Chapters 4 and 5. Inevitably these chapters are somewhat mathe-
matical in approach. The details may be important only to those who are
involved in process design and optimization but we hope that the more
general reader will still be able to gain some insight concerning the underly-
ing principles and the strengths and limitations of the various approaches.

A three-way collaboration between authors inevitably raises some diffi-
culties since it becomes hard to maintain consistency in style and emphasis
and to avoid repetition between different sections of the text. We hope,
however, that the advantages of a more authoritative treatment of the subject
will more than compensate for any such deficiencies. From our perspective
the collaboration has proved interesting and instructive, and we have encoun-
tered no serious disagreements amongst ourselves.

UNB, Fredericton, Canada D. M. Ruthven
National University of Singapore S. Farooq
Adsorption Research Inc., Dublin, Ohio K. S. Knaebel

June 1993



List of Symbols

sorbate activity; external area per unit volume for adsorbent
sample (Eq. 2.46)

adsorbent surface area per mole (Eq. 2.10); A + A’ (Table 5.10);
membrane area (Eq. 8.1)

cross-sectional area of column wall (Table 5.10)

internal cross-sectional area of column

Helmholtz free energy (Eq. 2.11)

collocation coefficient for internal (intraparticle) concentration
profile (Appendix B)

collocation coefficient for velocity profile during pressurization
(Appendix B)

collocation coefficient for the external (fluid-phase) concentration
profile (Appendix B)

Langmuir constant

pre-exponential factor (b = b, e~ 2U/RT)

mobility coefficient (Eq. 2.29); constant in Eq. 4.76

collocation coefficient for the intraparticle (internal) phase
Laplacian

collocation coefficient for the external fluid-phase Laplacian
sorbate concentration in gas phase

sorbate concentration in feed

total gas-phase concentration

volumetric heat capacity of gas (pC,)



i LIST OF SYMBOES

volumetric heat capacity of solid (pC,)

heat capacity of steel wall (mass basis) (Table 5.10)
internal diameter of adsorbent column

diffusivity

micropore or intracrystalline diffusivity

effective diffusivity

Knudsen diffusivity

axial dispersion coefficient

molecular diffusivity

pore diffusivity

diffusional activation energy

enrichment of heavy component (¥ /y 4)

isotherm function for component i at composition j
isotherm slope (dg™ /dc) at composition j

total feed volume

free energy of adsorbed phase (Eq. 2.11)

Fp fractions of components A4, B desorbed from column during
depressurization

purge-to-feed velocity ratio

Gibbs free energy of adsorbed phase (Eq. 2.8)

overall heat transfer coefficient

enthalpy change on adsorption

flux of sorbate

overall mass transfer (LDF) rate coefficient based on

adsorbed phase concentration

adsorption equilibrium constant or isotherm slope; constant in
Eq. 7.5

adsorption equilibrium constant on crystal (microparticle) volume
adsorption equilibrium constant or isotherm slope based on
sorbate pressure

pre-exponential factors (Eq. 2.2)

effective thermal conductivity of steel wall (Table 5.10)

adsorbent bed length

phenomenological coefficients

molecular weight; constant in quadratic isostherm expression
exponent in Freundlich isotherm expression

moles of adsorbable component (Eq. 2.8)

moles of solid adsorbent (Eq. 2.8)

flux relative to fixed frame of reference (Eq. 2.26); total mole&
(gaseous and adsorbed) in bed at time ¢
p partial pressure of sorbate

D saturation vapor pressure

B absolute pressure (in column)

j2 rate of change of pressure during feed step (Eq. 4.35)
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high pressure (at end of pressurization)

feed pressure

low pressure (during purge step)

high pressure for compressor

low pressure for compressor

Peclet number (v ;L /D, )

absolute pressure ratio Py /P,

pressure ratio Py /Pg

pressure ratio Pp/P;

pressure ratio Py /P, (end of pressurization versus end of
blowdown)

absolute compression ratio P, /P,

adsorbed phase concentration

equilibrium value of ¢

value of g at equilibrium with feed (concentration c,)
value of g averaged over an adsorbent particle
saturation limit

molar gas flow rate

radial coordinate in microparticle

microparticle radius

inner and outer radii of column

radial coordinate in a microparticle; gas constant (R,); product
recovery

macroparticle radius

equilibrium selectivity K , /K 5

kinetic selectivity D, /D,

Sherwood number 2R k./D,,

time

adsorption or desorption time

temperature

feed temperature

internal energy change or adsorption

interstitial gas velocity

interstitial gas velocity at inlet

dimensionless interstital gas velocity v /UoH

volume

velocity of concentration front

velocity of temperature front

velocity of shock front

mole fraction (of component A4) in adsorbed phase; dimensionless
adsorbed phase concentration averaged over a
macroparticle g;/g;,

dimensionless adsorbed phase concentration averaged over a
microparticle (g/q;)
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fraction of complete purge

mole fraction of A4 in gas phase

average mole fraction (of raffinate product B) in blowdown gas
average mole fraction (of raffinate product B) in high-pressure
product stream

axial distance

dimensionless axial distance z/L
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Greek Symbols

permeability ratio (intrinsic separation factor); ¢ /(¢;; + ¢,) (in

Table 5.9)

separation factor x(1 — y)/y(1 —x) or y(1 — x)/x(1 — y)

kinetic selectivity (effective)—see Eq. 2.46

parameter characterizing heat effect [(AH/CXdq* /dT),] in Eq. 2.46;
adsorption selectivity parameter B8,/B; b,C

ratio of hold-up component i in void space as fraction of total hold-up
[1+ {1 -¢)/e)K,]7!

ratio of gas heat capacities at constant pressure and constant volume
ratio of Langmuir constants by /b,

ratio of micropore diffusivities D,z/D., 4

ratio of saturation capacities gg./q 4

dimensionless parameter (r?/D, )3k;/R XC/q 4)

dimensionless parameter (r./D, NC/q 4k,

voidage of adsorbent bed

porosity of adsorbent particle

(1 + ¢PyyeB4(1 — P17 (Chapter 4)

mechanical efficiency of compression; dimensionless radial coordinate
R/R,

adsorption selectivity parameter 6,/0,

dimensionless concentration g,;/q;, (Chapters 2 and 5); parameter

0, (P,y;,y,) =1+ —&)/eX(fi = fi)/ iz = YN RT /P,
where 1 and 2 refer to arbitrary states (Chapter 4)
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dimensionless adsorption or desorption time (e,D,/R2)c,/q,) t* (for
macropore control) or D t* /r2 for micropore control

ratio of dead volume to column volume; non-linearity parameter g, /q,
chemical potential; viscosity; mean residence time in column

parameter (1 — ¢)/¢) (M, /RT)

(1 — e)M,/eR

density

variance of pulse response

dimensionless time variable, tvoy/L (LDF model); tD,/r? (pore diffu-
sion model)

parameter €A LP, /B,4RT

surface potential

parameter defined by Eq. 5.16; integral function used in determining
recovery for pressurization with feed
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Subscripts

components A (more strongly adsorbed) and B (less strongly
adsorbed)

blowdown step

micropore or intracrystalline

component { in microparticle

column

dead volume

equivalent value (for component i) in countercurrent flow
model

feed or feed end

purge-to-feed ratio

high-pressure step, at inlet during high-pressure step, and for
component { during high-pressure step

refers to species i (A or B).

species i in microparticle, species i at saturation
intermediate

low-pressure (purge) step, at inlet during low-pressure step,
and for component i during low-pressure step

limiting or reference value, limiting or reference value for
component i

outlet or effluent

macropore or macroparticle

product end or pressurization step

purge step

xvil
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R rinse step

S saturation value

S condition following pressurization step

SH shock wave

w at wall

\%Y% combined blowdown and purge step effluent; waste or
byproduct

0.1,.2 initial state, ahead of shock, and behind shock

Superscript  * is sometimes used to denote and emphasize “equilibrium
value”
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