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Preface

In the chemical process industries, chemical reaction and the purification of the
desired products by distillation are usually carried out sequentially. In many
cases, the performance of this classic chemical process structure can be signifi-
cantly improved by integration of reaction and distillation in a single multifunc-
tional process unit. This integration concept is called ‘reactive distillation’ (RD);
when heterogeneous catalysts are applied the term ‘catalytic distillation’ is often
used.

As advantages of this integration, chemical equilibrium limitations can be
overcome, higher selectivities can be achieved, the heat of reaction can be
used in situ for distillation, auxiliary solvents can be avoided, and azeotropic
or closely boiling mixtures can be more easily separated than in non-RD.
Increased process efficiency and reduction of investment and operational
costs are the direct results of this approach. Some of these advantages are realized
by using reaction to improve separation; others are realized by using separation to
improve reaction.

Most important industrial applications of RD are in the field of esterification pro-
cesses such as the famous Fastman Chemical Co.’s process for the synthesis of
methyl acetate [1]. This process combines reactive and non-reactive sections in a
single hybrid RD column and thereby replaces a complex conventional flowsheet
with 11 process units. With this RD technology investment and energy costs
were reduced by factor five [2]. Another success story of RD was started in the
1980s by using this technology for the preparation of the ethers MTBE, TAME,
and ETBE, which are produced in large amounts as fuel components because of
their excellent antiknock properties [3].

Nowadays, many research and development activities are under way to introduce
RD into other chemical processes. But despite the convincing success of RD in
esterification and etherification applications, it is important to note that RD is
not always advantageous. In some cases it is not even feasible. Therefore, the
development of reliable tools for the conceptual design of RD processes is one
of the most important fields of current research activities.

Due to the interaction of reaction and distillation in one single apparatus, the
steady-state and dynamic operational behavior of RD can be very complex. There-
fore, suitable process control strategies have to be developed and applied, ensuring
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optimal and safe operation. This is another very important area of current and
future research and development.

Today, RD is discussed as one part of the broader area of reactive separation,
which comprises any combination of chemical reaction with separation such as
distillation, stripping, absorption, extraction, adsorption, crystallization, and mem-
brane separation. In the next decade, unifying approaches to reactive separators
should be developed allowing the rigorous selection of the most suitable type of
separation to be integrated into a chemical reactor.

Despite the fact that the basic idea of combining reaction and distillation is old,
there has been an enormously growing interest in the design and operation of RD
processes in recent years. Fig. 1 shows the number of journal papers that have
appeared on the subject during the last 30 years. It is worth noting that the total
number of publications including the papers in conference proceedings and so
on is a multiple of the number of publications in scientific journals. In an analo-
gous manner, the industrial interest in applying this attractive process technology
has increased continuously. This is reflected by the steadily growing number of
patents applied since 1970.

Despite the large number of publications only a few review papers have been
written on this topic so far. Podrebarac et al. [4] highlighted the advantages of
RD and gave an overview on potential uses of catalytic distillation. The review by
Taylor and Krishna [5] focused mainly on the modeling aspects of RD. Doherty
and Malone [6] gave valuable commentaries on future trends and challenges in
this field of research. Gorak and co-workers [7] summarized rate-based modeling
techniques for RD and also for reactive absorption. Book chapters on RD are
available in volumes on distillation technology by Stichlmair and Fair (8], and by
Doherty and Malone [9], and also in a recent book on reactive separations [10].
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Moreover, since RD is going to become a more established technology, it has
found its way into classic chemical engineering encyclopedias [11, 12].

However, a comprehensive volume covering all aspects of application, design,
analysis, and control of RD processes is still missing, To fill this gap, the present
book was prepared. Its chapters are wrilten by leading international experts from
both academic institutions and industrial companies. They summarize the present
state of knowledge and give an outlock on challenging issues in the future.

The book is divided into four parts: Part I surveys various industrial applications
and covers both established large-scale processes as well as hew chemical reaction
schemes with high future potential. Part II provides the vital details for analysis of
reactive phase equilibria, and discusses the importance of chemical reaction
kinetics, while Part Il focuses on identifying feasible column configurations
and the design of their internal structure. Analysis and control of the complex
dynamic and steady-state behavior of RD processes are described in Part IV.

Part | Industrial Applications

Chapters 1-3 give a survey of chemical reaction schemes that are performed
successfully in RD columns and present ideas for new applications. Sharma and
Mahajani (Chapter 1) point out that RD has acquired its new status only recently
in spite of the fact that the concept has been used in various processes since 1860s.
Over the last two decades, especially after the commissioning of large-scale plants
for MTBE and methyl acetate production, RD hasg been seen as a promising reac-
tor/separator that can fulfill multiple objectives simultaneously. With respect to
applications, engineers and chemists have started looking beyond the classic
esterification and etherification reactions. Hydrogenation, hydrodesulfurization,
isomerization, and oligomerization are some of the unconventional examples to
which RD has been successfully applied on a commercial scale. Moreover, hydro-
lysis, alkylation, acetalization, hydration, and transesterification have also been
identified as potential candidates for RD. Another important area of application
is the removal of small amounts of impurities to obtain high quality product
(e. 2., phenol). RD can also be used for the recovery of valuable products like acetic
acid, glycols, lactic acid, and so on from waste streams.

Schoenmakers and Bessling (Chapter 2) give an overview of the tools that are
available today and the methods that are now introduced in the industrial practice
of chemical companies. A process synthesis procedure gives good qualitative
reference points. Simulation tools have been developed that are mainly based on
equilibrium models. But there are further steps to go on the way to the realization
of an industrial plant. The scale-up from the miniplant scale used for the experi-
mental validation of a new process is well known for conventional distillation,
but complicated by several facts for RD especially in the case of heterogeneous
catalysis. To overcome these problems either reference plant experience on an
industrial scale or (if not available) further research is required. Other options
both for homogeneous and heterogeneous catalysis are possible and are discussed
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in the contribution. The authors emphasize that the combination of reaction and
distillation not necessarily has to be operated in a counter-current column. For
slower reactions a broad variety of equipment not necessarily containing columns
can be used.

In Chapter 3, Tuchlenski and colleagues itlustrate a procedure for process design
on an industrial scale using the decompesition of the fuel ether MTBE into metha-
nol and isobutene as an important example. Based solely on thermodynamic con-
siderations, a plausible colummn configuration is derived. In order to study the scale-
up of structured packing, experiments were performed on the lab scale as well as
on the pilot scale. While lab scale experiments could be described satisfactorily
with a simple equilibrium stage model, the same approach failed in the case of
pilot plant experiments, Hydrodynamics, maldistribution and/or mass-transfer
limitations might be a reasonable explanation and are worth more thorough inves-
tigation. The authors conclude that pilot plant operation is indispensable to estab-
lish a heterogeneously catalyzed RD process.

Part Il Physicochemical Fundamentals

Chapters 4 and 5 are dedicated to the thermodynamic and kinetic fundamentals of
RD processes. In Chapter 4, Hasse reviews the fundamentals of thermodynamic
modeling of simultaneous phase and reaction equilibria. The author emphasizes
the importance of consistency of phase equilibrium models. Thermodynaric con-
sistericy provides a sound basis for developing predictive reaction models for RDs,
which are valid over a wide range of concentrations. To develop phase equilibrium
models, reliable experimental data of phase equilibria in reactive systems have to
be available. For successful measurements, suitable experimental techniques are
needed, which are briefly summarized in this chapter. Criteria for their selection
are also given.

Sundmacher and Qi {Chapter 5) discuss the role of chemical reaction kinetics on
steady-state process behavior. First, they illustrate the importance of reaction ki-
netics for RD degign considering ideal binary reactive mixtures, Then the feasible
products of kinetically controlled catalytic distillation processes are analyzed based
on residue curve maps. Ideal ternary as well as non-ideal systems are investigated
including recent results on reaction systems that exhibit liquid-phase splitting. Re-
cent results on the role of interfacial mass-transfer resistances on the attainable top
and bottom products of RD processes are discussed. The third section of this con-
tribution is dedicated to the determination and analysis of chemical reaction rates
obtained with heterogeneous catalysts used in RD processes. The use of activity-
based rate expressions is recommended for adequate and consistent description
of reaction microkinetics. Since patticles on the millimeter scale are used as cata-
lysts, internal mass-transport resistances can play an important role in catalytic dis-
tillation processes. This is illustrated using the syntheses of the fuel ethers MTBE,
TAME, and ETBE as important industrial examples,
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Part Il Process Design

Chapters 6-8 focus on process design, 1. e. determining suitable column configura-
tions, suitable operating conditions, and suitable column internals. Chapter 6 by
Doherty and co-workers is concerned with conceptual process design. Geometrical
methods are provided, which allow at the initial stages of process development to
decide quickly whether RD is likely to be a good process concept. The attainable
region approach for reaction-mixing systems is applied to systems with simulta-
neous reaction and separation in order to assess the possible selectivity-yield-con-
version benefits of this technology. Feasible direct and indirect sharp splits are pre-
dicted with a model in which each column section is represented by a series of co-
current isobaric flashes. In the limits of no reaction, or of chemical equilibrium,
the model reduces to conventional models for distillation lines, and each column
section can be represented by the same equations. However, at intermediate rates
of reaction the models for the column sections are different, and new results are
obtained. A bifurcation study shows the limits of feasibility including the influence
of flow rate, catalyst level and holdup. Unlike distillation without reaction, limited
ranges of feasibility in all of these variables are found.

Chapter 7 by Krishna is concerned with hardware selection and design for RD
columns. An overview on available hardware for homogeneously as well as hetero-
geneously catalyzed RD processes is given. Criteria for suitable hardware selection
are discussed and illustrated by different case studies. It is shown that the require-
ments for hardware selection are different from conventional non-RD. The author
concludes that especially for heterogeneously catalyzed RD processes it is almost
impossible to reconcile the conflicting requirements and introduces the side reac-
tor concept as a promising alternative to overcome many of these conflicting hard-
ware issues.

Chapter 8 by Kunz and Hoflmann introduces a special catalyst technology devel-
oped by the authors. State of the art in industrial catalyst technology is to use cat-
alyst particles with a size in the millimeter range and to sew these particles into a
wire mesh or glass-fiber clothing to form structured packing. The manufacturing
process makes this type of packing expensive. In contrast to this, unstructured
packing materials like Raschig rings are much cheaper. However, so far, Raschig
rings with comparable catalytic activity are not commercially available. In the pres-
ent contribution the authors introduce various methods for the preparation of cat-
alytically active rings by polymerization of ion-exchange resin into the pores of a
carrier material. Application is tested for MTBE synthesis. Based on this technol-
ogy monolithic polymer/carrier materials were developed, which can be used for
other reactive separation processes like reactive chromatography and polymer-
assisted solution-phase organic synthesis.
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Part IV Modeling and Process Control

Chapters 9 and 10 are on modeling, dynamics, and control of RD processes. The
contribution by Taylor and Krishna (Chapter 9) deals with the modeling of homo-
geneously and heterogeneously catalyzed RD processes. The focus of this contribu-
tion is on steady-state behavior. First, the equilibrium stage model is introduced,
which is readily obtained from the non-reactive case by adding reaction terms.
Afterwards, non-equilibrium stage models are introduced as a more rigorous
approach. It is shown that different types of non-equilibrium models apply to
homogeneously and heterogenecously catalyzed processes. In the homogeneous
case, further distinction has to be made between slow and fast liquid-phase reac-
tions. In the heterogeneous case distinction between negligible and finite intrapar-
ticle diffusion inside the catalyst is essential. Finite intraparticle diffusion can be
modeled with the dusty fluid model, which is an extension by the authors of the
well-known dusty gas model. Finally, cell models are introduced to account for
non-ideal flow patterns on distillation trays and maldistribution in packed col-
umns. Equilibrium and non-equilibrium models are compared for different pro-
cess applications including MTBE, TAME, and ethylene glycol synthesis and a per-
spective on the use of non-equilibrium models in RD process design is given.

The final contribution by Kienle and Marquardt (Chapter 10) gives an overview
of the present knowledge of non-linear dynamics and control of RD columns. First,
focus is on open-loop dynamics. It is shown that RD processes can sometimes
show an intricate non-linear dynamic behavior, a profound understanding of
which is not only of scientific interest but also very important for improved process
design and operation. Basic terminology, methods, and tools are introduced for
analyzing and understanding non-linear dynamics. Three different types of reac-
tion systems are introduced including esterification, etherification, and the ethy-
lene glycol system. Different patterns of behavior are identified depending on
the reaction systems and the operating conditions. In the equilibrium regime of
the chemical reaction the dynamic behavior of a RD column is qualitatively similar
to a non-RD column, whereas in the kinetic regime the chemical reaction rate is
dominating. For closely boiling mixtures, like in many etherification processes,
the behavior in the kinetic regime is very similar to a single phase isothermal re-
actor. Additional effects arise for mixtures of components with completely different
boiling points as for the ethylene glycol system, for example. In the second part,
available guidelines for control structure selection and control system design are
summarized. Emphasis is on the equilibrium regime, Here, similar methods as
in non-RD apply. Additional complexity is introduced in inferential control
schemes, where temperature is used as a cheap, fast, and reliable measurement
instead of concentration. The authors conclude that control studies for kinetically
controlled processes are missing to a large extent.
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