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Preface

This book introduces the fundamental ideas of software engineering. As with most
terms naming broad categories, “software engineering” describes a field with a solid
core of key ideas, along with fuzzy boundaries separating it from other fields. The
Introduction (Chapter 1) outlines what I mean by the term; the Retrospective
(Chapter 20) reflects further on the key ideas and mentions other topics I have left
out.

Most of the book requires only general familiarity with programming. You can
understand some of the motivations better if you have written moderate-sized (1,000
to 3,000 line) programs in a higher-level language. Many programming examples
presume knowledge of Pascal; some use Ada or C. Chapter 6 requires some fami-
liarity with first-order logic. Part III requires some mathematical sophistication; you
should be familiar with discrete mathematics, particularly set theory, functions, and
mathematical logic.

Although this textbook should be valuable to anyone who wishes to understand
software engineering, I have aimed it primarily at senior-level undergraduates or
graduate students who have had little or no experience working with others on a
large program. Thus I include some material, such as that of Chapter 15, that
should be familiar to those who have already had some form of programming job.
Furthermore, I believe the only way to teach software engineering is to have stu-
dents carry out a moderate-sized group project; this text is geared to a one-
semester or one-year group project course.



xxii Preface

I could not have written this book without the guidance of David Parnas, who
has taught software engineering project courses for many years. I based much of
the material of Part II on a collection of papers he put together for his course at the
University of Victoria. The bibliography lists other sources I consulted. Other
material comes from my experience as a member of the technical staff at Bell-
Northern Research, and a staff scientist at Tartan Laboratories. While I was build-
ing and maintaining systems as a Research Assistant at Carnegie-Mellon University,
I learned much from Ivor Durham, Craig Everhart, Joe Newcomer, Brian Reid,
Tom Rodeheffer, and Steve Shafer. Some of the material for Chapter 17 came from
discussions with Ed Satterthwaite about system modeling, and with Ellen Borison
about her Ph.D. dissertation.

Thanks to (in alphabetical order) Richard Beard, John Nestor, Joe Newcomer,
and Sid Penstone for enlightening discussions of what it means to be an engineer.
Margaret Lamb proofread two earlier drafts of the book, wrote the program that
produced the index, suggested some of the projects in Chapter 4, discovered several
embarrassing mistakes in examples, and helped me to improve the trace specifica-
tions in Appendix E. Thanks also to the students in CISC422 and CISC838 at
Queen’s University during 1985 and 1986, who endured my efforts to write this
book; Phil Beaudet, Susan Lee, Karen Lefave, and Jim Roche helped by comment-
ing on earlier drafts of the manuscript.
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