’

&

=3

j":

8862699

MARANIw00

E8862699

Software Engineering:
__Planning for Change __

David Alex Lamb

Department of Computing and Information Science
Queen’s Umve sity
Kingston, Ontario, Canada

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Lams, Davip Atex, 1954- 4 _;f , 'y A

Software engineering.

Bibliography: p.

Includes index.

1. Computer software—Development. 1. Title.
QA76.76.D47L36 1988 005.1 87-14321
ISBN 0-13-822982-1

Editorial/production supervision

and interior design: Mary Jo Stanley
Cover design: Lundgren Graphics, Ltd.
Manufacturing buyer: Gordon Osbourne

© 1988 by Prentice Hall
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 21

ISBN 0-13-822982-1 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Software Engineering:
Planning for Change

8862699

In loving memory

Roy William Lamb
1905-1986

Richard M. Beard
1924-1986

Preface

This book introduces the fundamental ideas of software engineering. As with most
terms naming broad categories, “software engineering” describes a field with a solid
core of key ideas, along with fuzzy boundaries separating it from other fields. The
Introduction (Chapter 1) outlines what I mean by the term; the Retrospective
(Chapter 20) reflects further on the key ideas and mentions other topics I have left
out.

Most of the book requires only general familiarity with programming. You can
understand some of the motivations better if you have written moderate-sized (1,000
to 3,000 line) programs in a higher-level language. Many programming examples
presume knowledge of Pascal; some use Ada or C. Chapter 6 requires some fami-
liarity with first-order logic. Part III requires some mathematical sophistication; you
should be familiar with discrete mathematics, particularly set theory, functions, and
mathematical logic.

Although this textbook should be valuable to anyone who wishes to understand
software engineering, I have aimed it primarily at senior-level undergraduates or
graduate students who have had little or no experience working with others on a
large program. Thus I include some material, such as that of Chapter 15, that
should be familiar to those who have already had some form of programming job.
Furthermore, I believe the only way to teach software engineering is to have stu-
dents carry out a moderate-sized group project; this text is geared to a one-
semester or one-year group project course.

xxii Preface

I could not have written this book without the guidance of David Parnas, who
has taught software engineering project courses for many years. I based much of
the material of Part II on a collection of papers he put together for his course at the
University of Victoria. The bibliography lists other sources I consulted. Other
material comes from my experience as a member of the technical staff at Bell-
Northern Research, and a staff scientist at Tartan Laboratories. While I was build-
ing and maintaining systems as a Research Assistant at Carnegie-Mellon University,
I learned much from Ivor Durham, Craig Everhart, Joe Newcomer, Brian Reid,
Tom Rodeheffer, and Steve Shafer. Some of the material for Chapter 17 came from
discussions with Ed Satterthwaite about system modeling, and with Ellen Borison
about her Ph.D. dissertation.

Thanks to (in alphabetical order) Richard Beard, John Nestor, Joe Newcomer,
and Sid Penstone for enlightening discussions of what it means to be an engineer.
Margaret Lamb proofread two earlier drafts of the book, wrote the program that
produced the index, suggested some of the projects in Chapter 4, discovered several
embarrassing mistakes in examples, and helped me to improve the trace specifica-
tions in Appendix E. Thanks also to the students in CISC422 and CISC838 at
Queen’s University during 1985 and 1986, who endured my efforts to write this
book; Phil Beaudet, Susan Lee, Karen Lefave, and Jim Roche helped by comment-
ing on earlier drafts of the manuscript.

Contents

Preface xxi

Part I: Overview

1 Introduction 1
1.1 Relationto Other Fields 2
1.2 Why the Difficulty? 4
1.3 Using This Book 4
Further Reading 6

2 The Lifetime of a Software System 7
2.1 Typical Activities 7
2.1.1 Opportunity Study 8
2.1.2 Problem Formulation 9
2.1.3 Product Realization 10
2.14 Delivery and Beyond 10
2.2 Project Documents 10
23 Overlap and Cycles 11
24 Personnel 12
Further Reading 12

vii

viii

3

Technical Writing 13

3.1 Planninga Document 13
32 Organizing a Document 15
3.3 Proofreading 16

Further Reading 17

Exercises 17

Part II: Software Lifetime

4

Requirements Analysis and Specification 19
4.1 WhatIs a Requirement? 19
42 Problem Analysis 21
42.1 Dealing with Customers 21
422 Why Build This System? 22
423 Requirements Considerations 23
424 Sketching Initial Requirements 24
43 The Requirements Specification Document 26
43.1 Document Organization 28
43.2 Inputand Output 30
43.3 Describing Software Functions 31
433.1 Modes 32
4332 Concurrent Systems 32
44 User Documentation 33
4.5 Designing Subsets 35
4.6 Validating Requirements 37
Further Reading 37
Exercises 37
Project Exercises 37

Preliminary Design 41
5.1 System Structure 41
5.1.1 The Is Composed Of Relation 42
5.12 The Uses Relation 43
5.2 Desiderata for Modular Systems 44
5.2.1 Program Families 45
522 Stepwise Refinement 46
5.3 Information Hiding 47
53.1 Hiding Representations 48
5.3.2 Hiding Policies 50
5.3.3 Hiding Time of Operations 51
5.4 The Module Decomposition Document 51
54.1 System Modules 52

Contents

Contents

54.2
543
5.4.4

Behavior Modules 53
Software Decision Modules 53
How to Modularize 54

5.5 Module Dependencies 56
5.6 Relationto Other Methods 56
Further Reading 57

Exercises 58

Project Exercises 58

6 Module Interfaces 59
6.1 Deciding on Functionality 59

6.1.1
6.1.2

Abstract Interfaces 60
Imports and Exports 60

6.2 Information-Hiding Complexities 62

6.2.1
6.2.2
6.2.3
6.2.4

Iterators 63
Accumulators 67
Path Expressions 70
Editors 71

6.3 WhatIs a Specification? 72

6.3.1
6.3.2

Using Specifications 72
Abstract Programs 73

6.4 Defining Interface Procedures 75

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Specification Content 76
Undefined Values 78
Implementation Languages 79

Specifying Input/Output Operations 80

Summary Information 82

6.5 Restricted Interfaces 83
Further Reading 84

Exercises 84

Project Exercises 85

7 Module Implementation 87
7.1 RepresentingModules 87

7.1.1
7.1.2
7.1.3

No Module Facilities 88
Separate Compilation 89
Module Constructs 91

7.2 Casting Specificationsinto Implementations 91

7.2.1
122
723
724
7.2.5

Interface Procedures 92
Namespace Control 94
Undesired Event Handling 94
Undefined Values 100
Initialization 101

ix

X Contents

7.3 Module Design 101
74 Coding 102
7.4.1 Style Conventions 103
7.42 Commenting Conventions 104
7.43 Usage Conventions 106
Exercises 107
Project Exercises 108

8 Testing 109
8.1 Scaffolding 111
8.1.1 Test Drivers 111
8.12 Stubs 111
82 Unit Testing 113
83 Integration Testing 114
83.1 Styles of Integration 114
83.2 Unit Testing versus Integration Testing 115
84 System Testing 115
85 Regression Testing 116
8.6 Personnel 117
Exercises 117
Project Exercises 118

9 System Delivery 119
9.1 Site Preparation 119
9.2 User Training 120
9.3 System Introduction 121
94 The Effect of Market Size 122

10 Evolution 125

10.1 Categories of Maintenance 125

102 Levels of Support 126
10.2.1 Full Support 126
10.22 The Worst Case 127
1023 Restructuring 127

10.3 Product Support 129
103.1 Problem Reports 129
10.3.2 Multiple Releases 130
10.3.3 Distributing Information 131
10.3.4 Conversion Support 131

Further Reading 132

Project Exercises 132

Contents

Part III: Specifications and Verification

11

12

13

14

Introduction to Specifications 133
11.1 Common Issues 133

11.2 Verification 134

11.3 Limitations of Specifications 134
Further Reading 136

Algebraic Specifications 137
12.1 Outline of a Specification 137
12.1.1 Exceptions 139
12.1.2 Constructor Functions 139
12.1.3 Auxiliary Functions 140
122 Dealing with Side Effects 140
12.3 Reasoning About Algebraic Specifications 143
124 Advantages and Disadvantages 144
Exercises 145

Trace Specifications 147

13.1 State Machine Specifications 147
13.2 Trace Specifications 148

13.3 More Complex Traces 151

13.4 Normal Forms for Traces 153

13.5 Advantages and Disadvantages 155
Further Reading 157

Exercises 157

Abstract Modeling 159

14.1 Overview of Verification 159

142 Overview of Abstract Modeling 160
143 Relationto Algebraic Specifications 162
Further Reading 166

Exercises 166

Part IV: Other Topics

15

The Workplace 169
15.1 Team Structure 169
15.1.1 Small Teams 170
15.1.2 Chief Programmer Teams 171
15.1.3 Chief Programmer/Chief Engineer 172
15.14 Designer/Team Leader 172

xii Contents

15.2 Meetings 172
15.2.1 Status Meetings 173
15.2.2 Brainstorming Sessions 173
15.2.3 Decision-Making Meetings 174
15.3 Programmer Psychology 174
153.1 Ego 175
15.3.2 Programmer Variability 175
15.3.3 Group Psychology 176
154 Personal Logs 176
Further Reading 177

16 Scheduling and Budgeting 179
16.1 Schedules 179
16.2 Budgets 181
16.3 Estimating Time 182
Further Reading 183
Exercises 184

17 Configuration Management 185
17.1 The Need for Configuration Management 185
17.2 ConfigurationIdentification 186
17.2.1 Objects 186
17.2.2 Relationships 187
17.3 Configuration Control 188
17.3.1 Baselines and Updates 189
17.3.2 Change Control 190
17.3.3 System Rebuilding 190
174 Configuration Status and Accounting 191
17.5 Configuration Hierarchy 192
Further Reading 192

18 Quality Assurance 193

18.1 Measures of Quality 193

18.2 Validation 194

18.3 Reviews 195
18.3.1 Requirements Review 196
18.3.2 Design Review 197
18.3.3 Code Walkthroughs 198

Exercises 199

Project Exercises 199

Contents

19 Tools 201

19.1
19.2
19.3

194
19.5

Evaluatinga Tool 201

Software Engineering Environments 203
Reusable Components 203

19.3.1 Module Libraries 204

19.3.2 Program Generators 204
Prototyping 205

Toolsmith and Tools Group 206

Further Reading 207

20 Retrospective 209

20.1 Fundamental Themes 209

20.2 What Else Is There? 210

20.3 Do People Really Do This? 210

20.4 A Personal View 212

Appendices
A Sample User’s Guide 215

A.1 Introduction 215

A2 Commands 216
A2.1 AddCommand 216
A22 Change Command 217
A23 Delete Command 217
A24 Exit and Quit Commands 218
A2S5 Help Command 218
A26 What Command 218
A.277 'Who Command 219

A3 Exception Summary 219
A3.1 Add Command Exceptions 219
A3.2 Input File Exceptions 220
A3.3 Other Command Exceptions 221
A.3.4 Unchecked Problems 221

A4 Glossary 221

B Sample Life-Cycle Considerations 223

B.1
B.2
B.3
B.4

Introduction 223
Fundamental Assumptions 223
Potential Changes 224
Subsets 225

xiii

xiv

C Sample System Test Plan 227

C.1
Cc2

C3

Introduction 227
Functionality Tests 229

C.2.1 Basic Functionality 229
C.2.2 Advanced Functionality 230
Exception Tests 230

C3.1 Input File Tests 230

C3.2 Capacity Exceptions 233

D Sample Module Decomposition and Dependencies

D.1

Introduction 235

D.2 System Module 236

D3

D4

D.5

D.2.1 Char Module 236
Requirements Module 236
D.3.1 Add Module 236
D.3.2 Change Module 236
D.3.3 Delete Module 236
D34 Command Module 236
D.3.5 GenFile Module 236
D.3.6 What Module 236
D.3.7 'Who Module 236
Software Decision Module 237
D.4.1 Find Module 237
D42 Name Module 237
D.4.3 Person Module 237
D.4.4 RelDef Module 237
D45 Set Module 237
D.4.6 Table Module 237
D.4.7 Word Module 237
Module Dependencies 238
D.S.1 Add Module 239
D.5.2 Change Module 239
D.5.3 Char Module 239
D.5.4 Delete Module 239
D.5.5 Command Module 239
D.S.6 Find Module 239
D.S.7 GenFile Module 239
D.5.8 Main Module 239
D.5.9 Name Module 240
D.5.10 Person Module 240
D.5.11 RelDef Module 240
D.5.12 Set Module 240
D.5.13 Table Module 240

235

Contents

Contents

D.5.14 What Module 240
D.5.15 Who Module 240
D.5.16 Word Module 240

E Sample Module Specifications 241

E.1
E2
E3
E4
E.5
E.6
E.7
ES8
E.9

E.10
E.11

Introduction 241

Command Module 242

Find Module 242

GenFile Module 242

Name Module 243

Person Module 245

Person Module, Find Interface 248
RelDef Module 249

Set Module 251

E9.1 Syntax 251

E.9.2 Auxiliary Functions 251
E93 Equations 251

What Module 252

Who Module 252

F Sample Integration Test Plan 253

F.1
F.2
F.3
F4

F.5

Introduction 253

Unit Testing 254
Integration Testing 254

Test Drivers 255

F4.1 Char Module 255
F42 Command Module 255
F.4.3 Find Module 255
F.44 GenFile Module 255
F4.5 Name Module 255
F.4.6 Person Module 256
F4.7 RelDef Module 256
F.4.8 Set Module 256
F4.9 Table Module 256
F.4.10 What Module 256
F.4.11 Who Module 257
F.4.12 Word Module 257
Stubs 257

F.5.1 Person Module 257
F.5.2 What Module 257
F.5.3 Who Command 257

G Sample Module Implementation Summary 259

G.1
G.2
G3
G4
GS
G.6
G.7
G.38

Introduction 259
Find Module 259
GenFile Module 260
Name Module 260
RelDef Module 262
Set Module 263
Who Module 264
Word Module 264

H Sample Listing 265

H.1
H.2
H.3

Explanation of the Listing 265
The Listing 267

Code Walkthrough Report 273
H.3.1 Observations 273
H.3.2 Actionltems 273

I Sample Release Notice 275

I.1
1.2
L3
L4

Introduction 275
Restrictions 275
Input Files 275
Exception Messages 276

Glossary 277

Bibliography 279

Index 283

Contents

