Bernhard M. Himmerli
Robin Sommer (Eds.)

Detection of Intrusions
and Malware, and
Vulnerability Assessment

4th International Conference, DIMVA 2007
Lucerne, Switzerland, July 2007
Proceedings

@

DIMVA2007

LNCS 4579

@ Springer

Bernhard M. Himmerli Robin Sommer (Eds.)

Detection of Intrusions
and Malware, and
Vulnerability Assessment

4th International Conference, DIMVA 2007
Lucerne, Switzerland, July 12-13, 2007
Proceedings

@ Springer

Volume Editors

Bernhard M. Himmerli

Acris GmbH und HTA Lucerne
BodenhofstraBe 29, 6005 Luzern, Switzerland
E-mail: bmhaemmerli @acris.ch

Robin Sommer

International Computer Science Institute
1947 Center St. Suite 600

Berkeley, CA 94704, USA

E-mail: robin@icsi.berkeley.edu

Library of Congress Control Number: 2007930209

CR Subject Classification (1998): E.3, K.6.5, K4, C.2, D.4.6
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-73613-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73613-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12089918 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4579

Lecture Notes in Computer Science

~For information about Vols. 14511

please contact your bookseller or Springer

Vol. 4611: J. Indulska, J. Ma, L.T. Yang, T. Ungerer,
J. Cao (Eds.), Ubiquitous Intelligence and Computing.
XXIII, 1257 pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovic, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4605: D. Papadias, D. Zhang, G. Kollios (Eds.),
Advances in Spatial and Temporal Databases. X, 479
pages. 2007.

Vol. 4602: S. Barker, G.-J. Ahn (Eds.), Data and Appli-
cations Security XXI. X, 291 pages. 2007.

Vol. 4600: H. Comon-Lundh, C. Kirchner, H. Kirch-

ner, Rewriting, Computation and Proof. XVI, 273 pages.
2007.

Vol. 4598: G. Lin (Ed.), Computing and Combinatorics.
XII, 570 pages. 2007.

Vol. 4597: P. Perner (Ed.), Advances in Data Mining. XI,
353 pages. 2007. (Sublibrary LNAI).

Vol. 4596: L. Arge, C. Cachin, T. Jurdzifiski, A. Tarlecki
(Eds.), Automata, Languages and Programming. XVII,
953 pages. 2007.

Vol. 4595: D. Bosnacki, S. Edelkamp (Eds.), Model
Checking Software. X, 285 pages. 2007.

Vol. 4594: R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.),
Artificial Intelligence in Medicine. XVI, 509 pages.
2007. (Sublibrary LNAI).

Vol.4592: Z. Kedad, N. Lammari, E. Métais, F. Meziane,
Y. Rezgui (Eds.), Natural Language Processing and In-
formation Systems. XIV, 442 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4590: W. Damm, H. Hermanns (Eds.), Computer
Aided Verification. XV, 562 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4588: T. Harju, J. Karhumiki, A. Lepisto (Eds.),
Developments in Language Theory. X1, 423 pages. 2007.
Vol. 4587: R. Cooper, J. Kennedy (Eds.), Data Manage-
ment. XIII, 259 pages. 2007.

Vol. 4586: J. Pieprzyk, H. Ghodosi, E. Dawson (Eds.),
Information Security and Privacy. XIV, 476 pages. 2007.
Vol. 4585: M. Kryszkiewicz, J.F. Peters, H. Rybinski,
A. Skowron (Eds.), Rough Sets and Intelligent Systems
Paradigms. XIX, 836 pages. 2007. (Sublibrary LNAI).

Vol. 4584: N. Karssemeijer. B. Lelieveldt (Eds.), Infor-
mation Processing in Medical Imaging. XX, 777 pages.
2007.

Vol. 4583: S.R. Della Rocca (Ed.), Typed Lambda Cal-
culi and Applications. X, 397 pages. 2007.

Vol.4582:J. Lopez, P. Samarati, J.L. Ferrer (Eds.), Public
Key Infrastructure. XI, 375 pages. 2007.

Vol. 4581: A. Petrenko, M. Veanes, J. Tretmans, W.
Grieskamp (Eds.), Testing of Software and Communi-
cating Systems. XII, 379 pages. 2007.

Vol. 4580: B. Ma, K. Zhang (Eds.), Combinatorial Pat-
tern Matching. XII, 366 pages. 2007.

Vol. 4579: B. M. Himmerli, R. Sommer (Eds.), Detec-
tion of Intrusions and Malware, and Vulnerability As-
sessment. X, 251 pages. 2007.

Vol. 4578: F. Masulli, S. Mitra, G. Pasi (Eds.), Appli-
cations of Fuzzy Sets Theory. XVIII, 693 pages. 2007.
(Sublibrary LNAI).

Vol. 4577: N. Sebe, Y. Liu, Y. Zhuang (Eds.), Multimedia
Content Analysis and Mining. XIII, 513 pages. 2007.

Vol. 4576: D. Leivant, R. de Queiroz (Eds.), Logic,
Language, Information and Computation. X, 363 pages.
2007.

Vol. 4575: T. Takagi, T. Okamoto, E. Okamoto, T.
Okamoto (Eds.), Pairing-Based Cryptography — Pairing
2007. X1, 408 pages. 2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
XI, 375 pages. 2007.

Vol. 4573: M. Kauers, M. Kerber, R. Miner, W. Wind-
steiger (Eds.), Towards Mechanized Mathematical As-
sistants. XIII, 407 pages. 2007. (Sublibrary LNAI).

Vol. 4572: F. Stajano, C. Meadows, S. Capkun, T. Moore
(Eds.), Security and Privacy in Ad-hoc and Sensor Net-
works. X, 247 pages. 2007.

Vol. 4570: H.G. Okuno, M. Ali (Eds.), New Trends in
Applied Artificial Intelligence. XXI, 1194 pages. 2007.
(Sublibrary LNAI).

Vol. 4569: A. Butz, B. Fisher, A. Kriiger, P. Olivier, S.
Owada (Eds.), Smart Graphics. IX, 237 pages. 2007.

Vol. 4566: M.]. Dainoff (Ed.), Ergonomics and Health

Aspects of Work with Computers. XVIII, 390 pages.
2007.

Vol. 4565: D.D. Schmorrow, L.M. Reeves (Eds.), Foun-
dations of Augmented Cognition. XIX, 450 pages. 2007.
(Sublibrary LNAI).

Vol. 4564: D. Schuler (Ed.), Online Communities and
Social Computing. XVII, 520 pages. 2007.

Vol. 4563: R. Shumaker (Ed.), Virtual Reality: XXII, 762
pages. 2007.

Vol. 4562: D. Harris (Ed.), Engineering Psychology and
Cognitive Ergonomics. XXIII, 879 pages. 2007. (Subli-
brary LNAI).

Vol. 4561: V.G. Duffy (Ed.), Digital Human Modeling.
XXIII, 1068 pages. 2007.

Vol. 4560: N. Aykin (Ed.), Usability and International-
ization, Part II. XVIII, 576 pages. 2007.

Vol. 4559: N. Aykin (Ed.), Usability and International-
ization, Part I. XVIII, 661 pages. 2007.

Vol. 4558: M.J. Smith, G. Salvendy (Eds.), Human Inter-
face and the Management of Information, Part I1. XXIII,
1162 pages. 2007.

Vol. 4557: M.J. Smith, G. Salvendy (Eds.), Human Inter-

face and the Management of Information, Part I. XXII,
1030 pages. 2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part ITL. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I1. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part 1. XXIII, 1240 pages. 2007.

Vol. 4549: J. Aspnes, C. Scheideler, A. Arora, S. Madden
(Eds.), Distributed Computing in Sensor Systems. XIII,
417 pages. 2007.

Vol. 4548: N. Olivetti (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. X, 245 pages.
2007. (Sublibrary LNAI).

Vol.4547: C. Carlet, B. Sunar (Eds.), Arithmetic of Finite
Fields. XI, 355 pages. 2007.

Vol. 4546: J. Kleijn, A. Yakovlev (Eds.), Petri Nets and
Other Models of Concurrency — ICATPN 2007. XI, 515
pages. 2007.

Vol. 4545: H. Anai, K. Horimoto, T. Kutsia (Eds.), Alge-
braic Biology. XIII, 379 pages. 2007.

Vol. 4544: S. Cohen-Boulakia, V. Tannen (Eds.), Data
Integration in the Life Sciences. XI, 282 pages. 2007.
(Sublibrary LNBI).

Vol. 4543: A.K. Bandara, M. Burgess (Eds.), Inter-
Domain Management. XII, 237 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-

quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4541: T. Okadome, T. Yamazaki, M. Makhtari
(Eds.), Pervasive Computing for Quality of Life En-
hancement. IX, 248 pages. 2007.

Vol. 4539: N.H. Bshouty. C. Gentile (Eds.), Learning
Theory. XII, 634 pages. 2007. (Sublibrary LNAI).

Vol. 4538: F. Escolano, M. Vento (Eds.), Graph-Based
Representations in Pattern Recognition. XII, 416 pages.
2007.

Vol. 4537: K.C.-C. Chang, W. Wang, L. Chen, C.A. El-
lis, C.-H. Hsu, A.C. Tsoi, H. Wang (Eds.), Advances in
Web and Network Technologies, and Information Man-
agement. XXIII, 707 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4534: 1. Tomkos. F. Neri, J. Solé Pareta, X. Masip
Bruin, S. Sdnchez Lopez (Eds.), Optical Network Design
and Modeling. XI, 460 pages. 2007.

Vol. 4533: F. Baader (Ed.), Term Rewriting and Appli-
cations. XII, 419 pages. 2007.

Vol. 4531: J. Indulska, K. Raymond (Eds.), Distributed
Applications and Interoperable Systems. XI, 337 pages.
2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture- Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4529: P. Melin, O. Castillo, L.T. Aguilar, J.
Kacprzyk, W. Pedrycz (Eds.), Foundations of Fuzzy
Logic and Soft Computing. XIX, 830 pages. 2007. (Sub-
library LNAI).

Vol. 4528: J. Mira, J.R. Alvarez (Eds.), Nature Inspired
Problem-Solving Methods in Knowledge Engineering,
Part I1. XXII, 650 pages. 2007.

Vol. 4527: J. Mira, J.R. Alvarez (Eds.), Bio-inspired
Modeling of Cognitive Tasks, Part I. XXII, 630 pages.
2007.

Vol. 4526: M. Malek, M. ReitenspieB, A. van Moorsel
(Eds.), Service Availability. X, 155 pages. 2007.

Vol. 4525: C. Demetrescu (Ed.), Experimental Algo-
rithms. XIII, 448 pages. 2007.

Vol. 4524: M. Marchiori, J.Z. Pan, C.d.S. Marie (Eds.),
Web Reasoning and Rule Systems. XI, 382 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y. Park, L.T.
Yang, S.W. Kim (Eds.), Embedded Software and Sys-
tems. XIX, 829 pages. 2007.

Vol. 4522: B.K. Ersbgll, K.S. Pedersen (Eds.). Image
Analysis. XVIII, 989 pages. 2007.

Vol. 4521: J. Katz, M. Yung (Eds.), Applied Cryptogra-
phy and Network Security. XIII, 498 pages. 2007.

Vol. 4519: E. Franconi, M. Kifer, W. May (Eds.), The
Semantic Web: Research and Applications. XVIII, 830
pages. 2007.

Vol. 4517: F. Boavida, E. Monteiro, S. Mascolo, Y.
Koucheryavy (Eds.). Wired/Wireless Internet Commu-
nications. XIV, 382 pages. 2007.

Vol. 4516: L. Mason, T. Drwiega, J. Yan (Eds.), Manag-
ing Traffic Performance in Converged Networks. XXIII,
1191 pages. 2007.

Vol. 4515: M. Naor (Ed.), Advances in Cryptology - EU-
ROCRYPT 2007. XIII, 591 pages. 2007.

Vol. 4514: S.N. Artemov, A. Nerode (Eds.), Logical
Foundations of Computer Science. XI, 513 pages. 2007.
Vol. 4513: M. Fischetti, D.P. Williamson (Eds.), Integer
Programming and Combinatorial Optimization. IX, 500
pages. 2007.

Preface

On behalf of the Program Committee, it is our pleasure to present to you the pro-
ceedings of the 4th GI International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). Each year DIMVA brings to-
gether international experts from academia, industry and government to present
and discuss novel security research. DIMVA is organized by the special interest
group Security—Intrusion Detection and Response of the German Informatics
Society (GI).

The DIMVA 2007 Program Committee received 57 submissions from 20 dif-
ferent countries. All submissions were carefully reviewed by Program Committee
members and external experts according to the criteria of scientific novelty, im-
portance to the field and technical quality. The final selection took place at a
Program Committee meeting held on March 31, 2007, at Universita Campus
Bio-Medico di Roma, Italy. Twelve full papers and two extended abstracts were
selected for presentation at the conference and publication in the conference pro-
ceedings. The conference took place during July 12-13, 2007, at the University
of Applied Sciences and Arts Lucerne (HTA Lucerne) in Switzerland. The pro-
gram featured both theoretical and practical research results grouped into five
sessions. The keynote speech was given by Vern Paxson, International Computer
Science Institute and Lawrence Berkeley National Laboratory. Another invited
talk was presented by Marcelo Masera, Institute for the Protection and Security
of the Citizen. Peter Trachsel, Deputy Head of the Federal Strategic Unit for
IT in Switzerland, gave a speech during the conference dinner. The conference
program further included a rump session organized by Sven Dietrich of Carnegie
Mellon University; and it was complemented by the third instance of the Euro-
pean capture-the-flag contest CIPHER, organized by Lexi Pimenidis of RWTH
Aachen.

We sincerely thank all those who submitted papers as well as the Program
Committee members and our external reviewers for their valuable contributions
to a great conference program.

For further details about DIMVA 2007, please refer to the conference Web
site at http://www.dimva.org/dimva2007.

July 2007 Bernhard Himmerli
Robin Sommer

Organization

Organizing Committee

General Chair Bernhard Hammerli (HTA Luzern)
Program Chair Robin Sommer (LBNL/ICSI)
Sponsor Chair Dirk Schadt

Program Committee

Roland Biischkes RWE, Germany

Weidong Cui Microsoft Research, USA

Marc Dacier Eurécom, France

Hervé Debar France Télécom, France

Sven Dietrich Carnegie Mellon University, USA
Toralv Dirro McAfee, Germany

Holger Dreger Siemens CERT, Germany
Mohamed Eltoweissy Virginia Tech, USA

Ulrich Flegel University of Dortmund, Germany
Felix C. Freiling University of Mannheim, Germany
Dirk Hager BSI, Germany

Bernhard Hammerli HTA Lucerne, Switzerland

Marc Heuse n.runs, Germany

Ming-Yuh Huang Boeing, USA

Erland Jonsson Chalmers University, Sweden
Klaus Julisch IBM Research, USA

Angelos Keromytis Columbia University, USA
Hartmut Konig BTU Cottbus, Germany

Christian Kreibich ICSI, USA

Christopher Kruegel TU Vienna, Austria

Pavel Laskov Fraunhofer FIRST, Germany
Wenke Lee Georgia Tech, USA

Jun Li Tsinghua University, China

Javier Lopez University of Malaga, Spain

John McHugh Dalhousie University, Canada
Michael Meier University of Dortmund, Germany
R. Sekar Stony Brook University, USA
Roberto Setola Univ. CAMPUS Bio-Medico Rome, Italy
Doug Tygar UC Berkeley, USA

Giovanni Vigna UC Santa Barbara, USA

VIII Organization

External Reviewers

Periklis Akritidis Thomas Biege Matt Burnside
Michael Collins Gabriela Cretu Michael E. Locasto
Jason Franklin Jan Goebel Van Hau Pham
Thorsten Holz Engin Kirda Ulf Larson
Corrado Leita Igor Nai Peng Ning

Vern Paxson Michalis Polychronakis =~ Maurizio Sajeva
Sebastian Schmerl Yingbo Song Olivier Thonnard
Jouni Viinikka Nicholas Weaver

Steering Committee

Chairs Ulrich Flegel (University of Dortmund)
Michael Meier (University of Dortmund)

Members Roland Biischkes (RWE)
Christopher Kruegel (TU Vienna)
Marc Heuse (n.runs)
Pavel Laskov (Fraunhofer FIRST)
Klaus Julisch (IBM Research)

DIMVA 2007 was organized by the Special Interest Group Security — Intrusion
Detection and Response (SIDAR) of the German Informatics Society (GI), in
cooperation with the IEEE Task Force on Information Assurance and the Infor-
mation Security Society Switzerland.

Support

The main sponsor of DIMVA 2007 was Secude Headquarter, Lucerne,
Switzerland. We sincerely thank them for their support.

Table of Contents

Web Security

Extensible Web Browser Securityo,
Mike Ter Louw, Jin Soon Lim, and V.N. Venkatakrishnan

On the Effectiveness of Techniques to Detect Phishing Sites
Christian Ludl, Sean McAllister, Engin Kirda, and
Christopher Kruegel

Protecting the Intranet Against “JavaScript Malware” and Related
ABBACKS .« oot
Martin Johns and Justus Winter

Intrusion Detection

On the Effects of Learning Set Corruption in Anomaly-Based Detection
of Web Defacements.
Eric Medvet and Alberto Bartoli

Intrusion Detection as Passive Testing: Linguistic Support with
TTCN-3 (Extended Abstract) i ...
Krzysztof M. Brzezinski

Characterizing Bots’ Remote Control Behavior

Elizabeth Stinson and John C. Mitchell

Traffic Analysis

Measurement and Analysis of Autonomous Spreading Malware in a
University Environment........ i
Jan Goebel, Thorsten Holz, and Carsten Willems

Passive Monitoring of DNS Anomalies (Extended Abstract)
Bojan Zdrnja, Nevil Brownlee, and Duane Wessels

Characterizing Dark DNS Behavior
Jon Oberheide, Manish Karir, and Z. Morley Mao
Network Security

Distributed Evasive Scan Techniques and Countermeasures............
Min Gyung Kang, Juan Caballero, and Dawn Song

20

40

60

79

89

X Table of Contents

On the Adaptive Real-Time Detection of Fast-Propagating Network
OIS . ottt e e e
Jaeyeon Jung, Rodolfo A. Milito, and Vern Pazson

Host Security

Targeting Physically Addressable Memory
David R. Piegdon and Lexi Pimenidis

Static Analysis on x86 Executables for Preventing Automatic Mimicry
AL ACKS .« o oot
Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi

A Study of Malcode-Bearing Documents
Wei-Jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki, and
Angelos D. Keromytis

Author Index

Extensible Web Browser Security

Mike Ter Louw, Jin Soon Lim, and V.N. Venkatakrishnan

Department of Computer Science,
University of Illinois at Chicago
{mter, jlim, venkat}@cs.uic.edu

Abstract. In this paper we examine the security issues in functionality extension
mechanisms supported by web browsers. Extensions (or “plug-ins”) in modern
web browsers enjoy unlimited power without restraint and thus are attractive vec-
tors for malware. To solidify the claim, we take on the role of malware writers
looking to assume control of a user’s browser space. We have taken advantage of
the lack of security mechanisms for browser extensions and have implemented a
piece of malware for the popular Firefox web browser, which we call BROWSER-
SPY, that requires no special privileges to be installed. Once installed, BROWSER-
Spy takes complete control of a user’s browser space and can observe all the
activity performed through the browser while being undetectable. We then adopt
the role of defenders to discuss defense strategies against such malware. Our pri-
mary contribution is a mechanism that uses code integrity checking techniques
to control the extension installation and loading process. We also discuss tech-
niques for runtime monitoring of extension behavior that provide a foundation
for defending threats due to installed extensions.

1 Introduction

The Internet web browser, arguably the most commonly used application on a network
connected computer, is becoming an increasingly capable and important platform for
millions of today’s computer users. The web browser is often a user’s window to the
world, providing them an interface to perform a wide range of activity including email
correspondence, shopping, social networking, personal finance management, and pro-
fessional business.

This usage gives the browser a unique perspective; it can observe and apply con-
textual meaning to sensitive information provided by the the user during very personal
activities. Furthermore, the browser has access to this information in the clear, even
when the user encrypts all incoming and outgoing communication. This high level of
access to sensitive, personal data warrants efforts to ensure its complete confidentiality
and integrity.

Ensuring that the entire code base of a browser addresses the security concerns of
confidentiality and integrity is a daunting task. For instance, the current distribution of
the Mozilla Firefox browser has a build size of 3.7 million lines of code (as measured
using the kloc tool) written in a variety of languages that include C, C++, Java, Java-
Script and XML. These challenges of size and implementation language diversity make
it difficult to develop a “one-stop shop” solution for this problem. In this paper, we fo-
cus on the equally significant subproblem of ensuring confidentiality and integrity in a

B. M. Himmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 1-19, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

2 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

browser in the presence of browser extensions. We discuss this problem in the context
of Mozilla Firefox, the widely used free (open source) software browser, used by about
70 million web users [1].

Browser extensions (or “add-ons”) are facilities provided to customize the brow-
ser. These extensions make use of interfaces exported by the browser and other plug-
ins to alter the browser’s behavior. Though the build of Firefox is platform-specific
(such as one for Windows XP, Linux or Mac OS X), extensions are primarily platform-
independent based on the neutral nature of JavaScript and XML, the predominant lan-
guages used to implement them.

Even though extensions plug directly into the browser, there is no provision currently
in Firefox to provide protection against malicious extensions. One way to do this is to
disallow extensions altogether. Firefox is able to do this when started in debugging
mode, which prevents any extension code to be loaded. However, typical installation
and execution in the normal mode allow extensions to be executed. Extensions offer
useful functionality, as evidenced by the popularity of their download numbers [2],
to several thousands of users who use them. Dismissing the security concerns about
extensions by turning them off ignores the problem.

To understand the impact of running a malicious extension, we set for ourselves
the goal of actually crafting one. Surprisingly, we engineered a malicious extension
for the Firefox browser we call BROWSERSPY, with modest efforts and in less than
three weeks. Once installed, this extension takes complete control of the browser. As
further testimony, a recent attack was launched on the Firefox browser using a malware
extension known as FormSpy [8], that elicited widespread media coverage and concern
about naive users.

There are two main problems raised by the presence of our malware extension and
the FormSpy extension:

— Browser code base integrity A malicious extension can compromise the integrity of
the browser code base when it is installed and loaded. We demonstrate (by construc-
tion) that a malicious extension can subvert the installation process, take control of
a browser, and hide its presence completely.

— User data confidentiality and integrity A malicious extension can read and write
confidential data sent and received by the user, even over an encrypted secure con-
nection. We demonstrate this by having our extension collect sensitive data input
by a user while browsing and log it to a remote site.

In this paper we present techniques that address these problems. To address extension
integrity, our solution empowers the end-user with complete control of the process by
which code is selected to run as part of the browser, thereby disallowing installation
integrity threats due to malware. This is done by a process of user authorization that
detects and refuses to allow the execution of extensions that are not authorized by the
end user.

To address the second challenge of data confidentiality and integrity, we augment the
browser with support for policy-based monitoring of extensions by interposition mech-
anisms retrofitted to the Spidermonkey JavaScript engine and other means (Section 5).

A key benefit of our solution is that it is targeted to rerrofit the browser. We consider
this benefit very important, and have traded off potentially better solutions to achieve

Extensible Web Browser Security 3

this benefit. Other benefits of our approach are that it is convenient, user-friendly and
poses very acceptable overheads. Our implementation is robust, having been tested with
several Firefox extensions.

This paper is organized as follows. A discussion of related work appears in Section 2.
We present the main details behind our malware extension in Section 3. We present our
solution to the extension integrity problem in Section 4 and address data confidentiality
in Section 5. We evaluate these approaches with several Firefox add-ons and discuss
their performance in the above sections individually. In Section 6 we conclude.

2 Related Work

We examined extension support in four contemporary browsers: Firefox, Internet Ex-
plorer (IE), Safari and Opera. Among the four browsers that we studied, only the Safari
browser does not support the concept of extensions. The remaining three possess ex-
tensible architecture but do not have security mechanisms addressing extension-based
threats. For instance, IE primary extension mechanism is through Browser Helper Ob-
jects (BHO). The PestPatrol malware detection website lists hundreds of malware that
use BHOs [5]. Furthermore, the integrity and confidentiality of the end-user’s private
data used in the browser is also not addressed in recent mechanisms such as “protected-
browser-mode” [4] in Windows Vista.

The problem of safely running extensions in a browser is in many ways similar to
the problem of executing downloaded untrusted code in an operating system. This is
a well known problem, and has propelled research in ideas such as signed code, static
analysis, proof-carrying code, model-carrying code and several execution monitoring
approaches. Below, we discuss the applicability of these solutions to the browser exten-
sion problem highlighting several technical and practical reasons.

Signed code. The Firefox browser provides support for signed extensions; however,
this is hardly used in practice. A search of extensions in the Firefox extensions repos-
itory addons .mozilla.org revealed several thousand unsigned extensions and only
two that were signed. In addition, we note that signed extensions merely offer a first
level of security. They only guarantee that they are from the browser distribution site
and are unmodified in transit; no assurance is provided regarding the security implica-
tions of running the extension.

Static analysis. A very desirable approach for enforcing policies on extension code is
by use of static analysis. Static analysis has been employed in several past efforts in
identifying vulnerabilities or malicious intent. The primary advantages of using static
analysis are the absence of execution overhead and runtime aborts, which are typical of
dynamic analysis based solutions.

It is difficult to employ static analysis for JavaScript code without making conserv-
ative assumptions, however. A first example is the eval statement in JavaScript that al-
lows a string to be interpreted as executable code. Without knowing the runtime values
of the arguments to the eval statement, it is extremely difficult—if not impossible—to
determine the runtime actions of the script. Another problem is tracing the flow of ob-
ject references in a prototype-based object oriented language such as JavaScript. For

4 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

instance, variable assignment to or from an array element or object property (when the
object is indexed as an associative array) can decisively hamper the tracking of object
reference flow as references are stored or retrieved.

Consequently, recent efforts that trace JavaScript code [11] use runtime approaches
to track references. An exception is [13] that employs static analysis for JavaScript for
detecting cross-site scripting (XSS) attacks. In their approach, scenarios like the above
are handled by a conservative form of tainting. This is suitable for their purpose of
preventing XSS attacks as evidenced by their experimental results, and the fact that
typical scripts from web pages are not expected to have complex eval constructs. This
approach is unsuitable for statically analyzing extension code in JavaScript, however.
Almost half (45%) of the extensions that we tested make heavy use of complex eval
constructs, while all generously use objects as associative arrays, making static analysis
very hard.

PCC and MCC. The difficulties for static analysis make frameworks such as proof-
carrying code (PCC) [10] unsuitable for this problem. It will be difficult to produce
proofs for extensions that make heavy use of constructs such as eval as part of their
code. The typical approach to employ PCC in scenarios that require runtime data is to:
(a) transform the original script with runtime checks that enforce the desired security
property, and (b) produce a proof that the transformed program respects this property.
The proof in this case is primarily used to demonstrate the correctness of the placement
of runtime checks.

In the browser situation, transformation needs to be made before all eval statements.
Policy enforcement would still be carried out by runtime checks, and therefore we did
not adopt this route of using PCC. Another solution is model-carrying-code [12] which
employs runtime techniques to learn the behavior of code that will be downloaded. The
difficulty in using this approach is in obtaining test suites for exhaustive code coverage
required for approaches based on runtime learning of models.

Execution monitoring. Several execution monitoring techniques [14,6,7] have pre-
viously looked at the problem of safely executing malicious code. The closest related
project to our approach is by Hallaraker and Vigna [7]. This was the first work that
looked at the security issues of executing malicious code in a large mainstream brow-
ser. Their focus is on protection against pages with malicious content rather than the
ensuring the integrity of a browser’s internal operations. For them it is not necessary to
address the problem of browser code integrity, as scripts from web pages are sandboxed
to prevent them from performing sensitive actions. In contrast we address the extension
installation integrity problem, as extension code is unmonitored and can perform many
sensitive operations.

To effectively regulate extension behavior, a runtime monitor must be able to deter-
mine the particular extension responsible for each operation. A direct adaptation of their
execution monitoring approach does not provide this ability, and is therefore not suited
for runtime supervision of extensions. To fill this void we describe two new action at-
tribution mechanisms making use of browser facilities and JavaScript interposition in
Section 5.

Extensible Web Browser Security 5

"attacker@remote-host
File Edit View Terminal Tabs Help

Firefox Spyware‘Extension -- Data ﬂ
Collector |

ns s s g
L @

Themes Languages

Google Toolbar for Firefo New client: localhost (127.0.0.1). |
Take the power of Google wit Host:ftp.mozilla.org User:anonymou '__
on the Web! s Pass:fireftp@example.com

' History: https://www.google.com/ac #
j counts/ServicelLoginAuth &

| ——

History: http://www.aclu.org/

NG g\ =)

(a) Extension hiding from the browser UL. (b) Data collector receiving sensitive information.

Fig. 1. Two views of the BROWSERSPY extension in operation.

3 A Malware Extension

To gain a better understanding of the threat posed by a malware extension, we set
ourselves the task of actually writing one. The motivations for creating the malicious
software are to: (a) help us identify the scope of threats malicious extensions pose by
understanding the facilities available to an extension in a browser, (b) increase our un-
derstanding of architecture-level and implementation-level weaknesses in the browser’s
extension manager, () give us a practical estimate in understanding the ease with which
malware writers may be able to craft such extensions, and (d) provide a concrete imple-
mentation of a malicious extension to serve as a benchmark for malware analysis.

Extension Capabilities. BROWSERSPY, the extension we authored, is capable of har-
vesting every piece of form data (e.g., passwords) submitted by the user, including those
sent over encrypted connections. Furthermore, once the extension enters the system, it
ensures that it remains undetectable by users (Figure 1 (a)).

Once BROWSERSPY is installed, it begins collection of personal data that will ulti-
mately fall into the hands of an attacker. As a user navigates the Internet, BROWSERSPY
harvests the URLs comprising their browsing history and stores them in a cache. Any
username and password pairs that are stored in Firefox’s built-in password manager are
retrieved, along with the URL of the site they pertain to. Form data that the user submits
finds its way into the extension as well. All of this information is stored and periodically
sent over the network to a remote host.

Given enough data the spy can effectively steal the identity of the person using the
browser. Intercepted form fields can give an attacker credit card numbers, street ad-
dresses, Social Security Numbers, and other highly sensitive information. The username
/ password pairs can readily provide access to the user’s accounts on external sites. The
history items can give the attacker a profile of the victim’s browsing patterns, and serve
as candidate sites for further break-in attempts using the retrieved set of username /

6 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

password pairs. Figure 1 (b) shows a remote window collecting sensitive information
about the user.

To mimick a spyware attack more closely, BROWSERSPY employs stealth to prevent
the user from knowing that anything unusual is being conducted. The extension uses two
techniques to shroud itself from Firefox’s installed extensions list. First, the extension
simply removes itself from the list so that the user won’t see it. Second, it injects itself
into a (presumably benign) extension, Google Toolbar (Figure 1 (a)). The latter method
serves as a technique to guard the extension from being discovered should the user
inspect the files on her system. The injection process is even successful at infecting
code signed browser extensions,' as the browser does not check the integrity of these
extensions following installation.

A common technique practiced by malware is covert information flow mechanisms
[9] for transmission. To mimic this behavior, our final stealth tactic deliberately delays
delivery of sensitive data to the remote host. We cache the information and send it out
in periodic bursts to offset the network activity from the event that triggers it, making
it harder for an observant user to correlate the added traffic with security sensitive op-
erations. Thus, the composite effect of some relatively easy measures employed by our
extension is alarming.

Extension entry vectors. The typical process of extension installation requires the user
to download and install the extension through a browser interface window. Though the
BROWSERSPY extension can be installed this way, this is not the only route by which
this malicious extension can be delivered to a browser. It can be delivered by preexisting
malware on the system without involving the browser. It can also be delivered outside
the browser given user account access for a short duration. These entry vectors are all
too common with unpatched systems, public terminals, and naive users who do not
suspect such threats.

Extension development effort. Very little effort was required to create this exten-
sion. The lack of any security in the browser’s Extension Manager module assisted in
its speedy creation. It only took one graduate student (who had no prior experience in
developing extensions) three weeks working part time to complete this extension. We
present this information merely to argue the ease with which this task can be accom-
plished. We note that this period of three weeks is merely an upper bound of effort for
creating malicious extensions. Malware writers have more resources, experience and
time to create extensions that could be more stealthy, perhaps employing increasingly
sophisticated covert mechanisms for information transmission.

Our implementation techniques. We started by studying the procedure of how exten-
sions are created, installed and executed in the system. Firefox extensions make use of
the Cross-Platform Component Object Model (XPCOM) framework, which provides
a variety of services within the browser such as file access abstraction. We carefully
studied interfaces to the XPCOM framework available for use by an extension, and dis-
cerned that one could easily program event observers for various operations performed

! Case in point, the code in the Google Toolbar extension is signed by Google, Inc.

