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Preface

The present notes are based on the lectures the author gave at Keio
University in 1989 and 1993. Recently the transcendence theory of Mahler
functions has seen profound development and has found a diversity of ap-
plications. This volume is the first comprehensive treatise on the subject.
The author hopes that it will be a source of further research.

A Mabhler function, for example, of one variable is a function which
satisfies a functional equation under the transformation z — 2%, where
d is an integer greater than unity. The study of transcendence and al-
gebraic independence of the values of those functions were started by
Mabhler’s three papers in 1929, 1930. After a gap of about fifty years,
it was again investigated by Kubota, Loxton, van der Poorten and the
author. Especially Masser’s vanishing theorem in 1982 gave a complete
solution to a problem of Mahler which is important for the study of the
values of Mahler functions of several variables. Next the present au-
thor applied elimination-theoretic method by Nesterenko and Philippon
to Mahler functions to obtain a general algebraic independence result
and a zero-order estimate. Amou, Becker and Topfer followed this ap-
proach. Very recently Barré-Sirieix, Diaz, Gramain and Philibert proved
the transcendence of J(q) = j(loggq/2nt) for algebraic ¢, where j(w) is
the modular invariant, which had been conjectured by Mahler.

Chapter 1 is concerned with transcendence of Mahler functions of one
variable and their values. After some preliminaries algebraic functional
equations are treated and an application to the Mandelbrot set by Becker
and Bergweiler is given but the proof of the transcendence of J(g) above
is not included. Chapter 2 is mainly devoted to the proof of Masser’s
vanishing theorem. Here we present a proof given by the author, which
is based on p-adic methods and simpler than Masser’s original proof.
Chapter 3 is on algebraic independence of Mahler functions and their
values. Generalizations of Mahler’s method by Kubota, Loxton, van der
Poorten and the author are exposed. Chapter 4 contains Nesterenko’s
lemmas without proofs and their applications to Mahler functions. Only
basic results are proved to clarify the idea. Chapter 5 is concerned with
the connection between regular sequences and Mahler functions. Some
examples are treated.

The author would like to express her heartfelt gratitude to Professor
lekata Shiokawa for his encouragement to publish this note; her husband

\



Professor Keiji Nishioka for giving her much valuable advice on the prop-
erties of functions; graduate students of Keio University, Mr. Taka-aki
Tanaka, Mr. Yoshihisa Uchida and Ms. Hiromi Kimura for checking the
text; Professor Yuji Ito for looking through the manuscript.

November 1995 Kumiko Nishioka
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Chapter 1

Transcendence theory of
Mahler functions of one
variable

1.1 Introduction and preliminaries

We denote by Q and by Z the field of rational numbers and the ring
of integers respectively. An algebraic number is one that satisfies some
equation of the form

"+ ap_12™ 4 ap =0,

with rational coefficients. A polynomial having leading coefficient 1 is
called monic. If an algebraic number « satisfies some monic polynomial
equation with rational integral coefficients, we say that « is an algebraic
integer. A complex number that is not algebraic is called transcendental.
The set of the algebraic numbers which is denoted by Q is a field and the
set of the algebraic integers which is denoted by I is a ring. We know that
INQ = Z. In 1844, Liouville gave the first example of transcendental
numbers, which was 5252, 10~*. Here we shall prove this.

First we give some notations. Let a be an algebraic number. The
algebraic number « satisfies a unique monic polynomial equation of least
degree, which is called the minimal polynomial of . We denote the degree
of it by deg(a). By W and den(a) we denote respectively the maximum
of the absolute values of & and its conjugates and the least positive integer
d such that da € I, that is

o] = max{|]a?|| o € Aut(Q/Q)}



den(a¢) = min{d€ Z |d >0, do € I}.

It is easily seen that

and
da, df € I = d(a+ ), d*aB €L

The following is fundamental throughout this note.

Fundamental inequality (Liouville inequality). If a is a nonzero
algebraic number with deg(a) = n, then

log |a| > —2nmax{log [a], logden(a)}.

Proof. Letting d = den(a), we have da € I and so

0# NQ(Q)/Q(da) eInNnQ=72.

Hence we have

n —n—1
1 < |INQ(a)/Qde)| < d%|af|a| .
Therefore

log |a| (1 —n)logla| — nlogd

(AVARV]

—2nmax{log o], logd}.

Theorem 1.1.1. If « is an algebraic number with 0 < |a| < 1, then
$°%° , @*" is transcendental.

Proof. Let f(z) = 322, 2" and suppose that f(a) is an algebraic
number. Put v, = f(a) — 77! &*'. Then we have v,, € Q(q, f(a))
and -

Y = Z = gt +o(|a|m!) _

k=m

Therefore, v, # 0 and || < ¢1]|a|™ if m is sufficiently large (in what
follows, ¢y, ca, ... denote positive constants depending on « but indepen-
dent of m). On the other hand,

] < TF(@)] + mmax{1, Ja[}™~V" < V)




and |
den(ym) < den(f(a))den(a)™ D! < ™71,

By the Fundamental inequality, we obtain

log ¢; + m!log |a| log |vYm|
-2[Q(e, f()) : Q] max{log ], logden(ym)}

—2[Q(a, f(@)) : Q](m — 1)!e4.

(AVAR AVAR AV

Dividing both sides by m! and letting m tend to infinity, we get log |a| > 0.
This contradicts the assumption || < 1.

It is known that e is transcendental for nonzero algebraic a. Es-
pecially e and 7 are transcendental numbers. Hilbert’s seventh problem
in 1900 asked whether o” is transcendental for any algebraic number
a # 0, 1 and any algebraic irrational 3 and it was solved by Gelfond and
Schneider independently in 1934. See Baker [1] for such topics. Here we
show a simple case of Mahler’s transcendence theory.

Theorem 1.1.2. Let d be an integer greater than 1. If « is an
algebraic number with 0 < |a| < 1, then 32, o is transcendental.

Proof. Let f(z) = Y %2, z%*. Then f(z) satisfies the functional
equation

f%) = f(z) - =

First we prove that f(z) is not algebraic over C(2). Assume that f(z)
satisfies the following irreducible equation

fE)* +an-1(2) f(2)" "+ -+ ao(2) =0, (1.1.1)
where a;(2) € C(z) (i =0,...,n — 1). Substituting 2¢ for z, we have
FEO 4 anaa (2D ()" 4+ ao(2*) = 0.
Since f(z%) = f(z) — z, we get
fG)"+ (—nz+an_1(zH) f(z)" 1+ .- = 0. (1.1.2)

Since the left hand sides of (1.1.1) and (1.1.2) must coinside as polyno-
mials of f(z), we obtain

an-1(z) = —nz+ an_l(zd).



Letting a,—1(2) = a(z)/b(z), where a(z), b(z) are coprime polynomials,
we get
a(2)b(z?) = —nzb(2)b(z?) + a(7)b(2). (1.1.3)

Hence b(z?%) must divide b(z), because a(zd) b(2%) are coprime. Therefore
degb(z) = 0 and so we may assume b(z) = 1. By (1.1.3),

a(z) = —nz + a(z%).
Comparing the degrees of both sides, we have a(z) € C and so —nz = 0,
a contradiction.

Suppose that f(a) is an algebraic number. Let K be an algebraic
number field, i.e. a finite extension of Q, which contains @ and f(«), and
p a positive integer. We assert that there are p+1 polynomials F,..., P,
€ Z[z] with degrees at most p such that the auxiliary function

=Y Pi(2)f(z) =D bpz"
j=0 h=0

is not identically zero and all the coefﬁcients by, with A < p?, vanish.
To see this, we put P;(z) = > )_ Ozr]gz Then by is a linear form of z;,
(0 < 7, £ < p) over Q. Since (p+ 1) > p? + 1, the system of equations
bo = by = --- = b2 = 0 has a nontrivial solution zj¢ in Z. Since f(z)
is not algebraic over C(z), E,(z) is not identically zero. Let H be the
least integer such that by # 0. Then H > p?. In what follows, ¢;, cp,. ..
denote positive constants independent of p, k and ¢;(p), c2(p), - . . denote
positive constants depending on p but independent of k. Since

lim F,(z)2~ H— by,

z—0

we have for any k > ¢, (p),
0 # |Ey(a®)] < ca(p)lal™™ < ex(p)]al®?”. (1.1.4)

On the other hand

<
x>
~—
<.

p

E,,(adk) = ZP o

0
= in(adk) (f(a) —a-a%- ---—adk_l)j.

=0

S,

.



Hence we obtain
d* -
Ep(a®) € K,
dk—l dkp

B < a@o+ D%k + 176 < colp)el™,

and
den(a)zdkpden(f(a))pEp(adk) €L

Therefore

max{log |Ep(ozdk)’, log den(Ep(adk))} < log cs(p) + csd*p.  (1.1.5)
By (1.1.4), (1.1.5) and the fundamental inequality, we have

log c3(p) + d*p*log|a| > —2[K : Q] (logcs(p) + c8dkp) , (1.1.6)

for k > ¢;(p). Dividing both sides of (1.1.6) by d* and letting k tend to
infinity, we get
p*loglal > —2[K : QJegp.

This is a contradiction for every large p and we complete the proof.

1.2 Mahler’s theorem

We generalize Theorem 1.1.2. For an algebraic number field K, we put
Ix = KNI and K[[z]] denotes the ring of formal power series in variable
z with coefficients in K. Suppose that f(z) € KJ[z]] has convergence
radius R > 0 and satisfies the following functional equation for an integer
d greater than one,

dy _ 2izoai(2)f(2)’
&)= Srn@rer
By A(z) we denote the resultant of "7 a;(2)u’ and Y7o b;(2)u’ as

polyomials in u. If one of them is a constant ¢(z) as a polynomial in u,
then A(z) = ¢(z).

m < d, a;(2),b;(z) € Ix[z]. (1.2.1)

Theorem 1.2 (Mahler [1]). Assume that f(z) is not algebraic over
K(z). If a is an algebraic number with 0 < |a| < min{l, R} and
A(adk) # 0 (k > 0), then f(a) is transcendental.



Remark. f(z) is algebraic over K (z) if and only if f(z) is algebraic
over C(z). For we assume f(2) satisfies

an(z)f(z)n+an—l(Z)f(z)n_l+' ) '+a0(z) = 07 ( € C[Z] aﬂ # 0.
Let {by,...,b,} be a maximal subset of the set of all the coefficients of
ao(z), ..., an(z) which is linearly independent over K. Then

z) = Z%‘(Z)bj’ ai;(z) € K[z],

and .
Z (anj(2)f(2)" + -+ ao;(2)) b; = 0.
1=1

Comparing the coeflicients of z, we have

an;(2)f(2)" +---+ag(z2) =0, j=1,...,m.

Since at least one of a,;(z) (j = 1,...,m) is not zero, f(z) is algebraic
over K (z). The converse is trivial.

Proof. Suppose that f(a) is algebraic. We may assume a, f(a) € K.
Let p be a positive integer. For a reason similar to the one in the proof
of Theorem 1.1.2, there are p + 1 polynomials Fy,...,P, € Ix[z] with
degrees at most p such that the auxiliary function

Z flz) = Z b 2"

is not identically zero and all the coefficients b, with h < p?, vanish.
Since f(z) is not algebraic over K(z), E,(z) is not identically zero. Let
H be the least integer such that by # 0. Then H > p%. Since

lim Ep(2)2~ H_— by,

z—0

we have for any k > ¢;(p),
0 # |Ep(a®)] < ea(p)|al ¥ < ca(p)lal®™”. (1.2.2)

There are polynomials S(z,u),T(z,u) € Ix[z,u] such that

A(z) = S(z,u) Y ai(z)u + T(z,u) Y bi(2)'.
1=0 1=0



Hence

m m

Afa) = S(a, f(a)) Y ai(@) f(@) + T(a, f(@) Y bi(e) f(a)'.

=0 1=0

-,

Suppose that "™, b;(a) f(a)' = 0. Since

(Z b,-(a)f(a)") f(@®) =3 ai(a)f(a),
1=0 =0

we get Y™ a;(a)f(a) = 0 and so A(a) = 0. This contradicts the
assumption. Therefore Y™ b;(a)f(a)' # 0 and f(a?) € K. Proceeding
in this way, we see that f(adk) € K and therefore Ep(adk) € K (k>0).
Define Y; (k > 1) inductively as follows,

m

i = Y bi(e)f(a),

1=0

Yier = Y& S bi(e®)f(e®),  k>1.

Then Yi € K and Y; # 0 (k > 1). We estimate lYk”E d")' and

den(YPEp(a®)). Let deg, a;(2), deg, bi(2) < ¢, [a], [f(a)] < c3 (e3> 1)
and D a positive integer such that Da, Df(a) € I. Then we have

Wl = Y b(e)f(e)] < S TH@] @] < cackel,
Vifed)] = |3 ae)f(@)| < S Tam@IIf@)] < cacher

and
Dl+myl’ Dl+mylf(ad) el

Since Yz = Y" S bi(e?) f(a?) and Yz f (o) = Y™ T ai(o?) f (@)Y,
we have

|Y2 Y2 f( (o) )| < (c 03() (C4C§+m)

and

Dd( (Dl+m) Ya, Ddl (Dl+m)m Yzf



Proceeding in this way, we obtain

1+m+_“+mk—l ¢ dk—l+dk_2m+'~~+mk_l mk
<y (c3)

Vel [Yif(a®) &

and

(Df)dk~1+dk_2m+-~~+mk_l Dkak c I’

(Dl)dk‘l+d"_2m+-~~+m"_1Dmkykf(ad") e L

By the assumption m < d, we have

k—1
dk—l +dk_2m+"'+mk‘1 — dk—l (1+ %_*_ cee (%) ) < C5dk_l,

where we take a positive integer as ¢5. Hence

— T+ el k—1 csdk =1 k
Vil [Yifa®)] < g™ ()™ off <

and
DEYi, DE'Yif(a®™) €1,  Do= Dl
Since »
k k i k. \J
Y2 Ep(a®) =Y P )2 (Yef(e™)),
3=0
we obtain
V2B, (0®)] < crlp)ed™ef™®, DRPYPE,(a¥) el (123)

By (1.2.2), (1.2.3) and the fundamental inequality,
d*plog cs + log ca(p) + d*p?log |a| > log ’Ykap(adk)’
> —2[K : Q] (log c7(p) + d¥plog csc + 2d*plog DO) ,

for k > ¢1(p). Dividing both sides above by d* and letting k tend to
infinity, we have

plogcs + p’loglal > —2[K : Q] (plog cace + 2plog Do) .

Dividing both sides above by p? and letting p tend to infinity, we have
log |a| > 0, a contradiction.



1.3 Transcendence of functions

To apply Theorem 1.2 to Mahler functions, we need the transcendence of
formal power series. Let C be an algebraically closed field of characteristic
0 and C[[z]] the formal power series ring over C.

Theorem 1.3 (Keiji Nishioka [2]). Suppose that f(z) € C[[z]] satis-
fies one of the following for an integer d > 1.

() £z =z 1(2))

() £(z) =z f(z4),
where (2, u) is a rational function in z, u over C. If f(z) is algebraic

over C(z), then f(z) € C(z2).

Proof. We need the notion from the theory of algebraic function
fields of one variable (cf. Cohn [1]). Let M be the quotient field of C[[z]]
and 7 the endomorphism from M into itself defined by

rz=z% Ta=a(a€).
Suppose that f(z) satisfies (i) and is algebraic over C'(z). Letting y =
f(z), we get an algebraic function field R = C(z, y) of one variable and
T is an endomorphism from R into itself. For a place P of R, there is a
unique place P! of TR such that

vp,—1(Tu) = vp(u), u€ R,

where v and v’ are associated normalized valuations with P and Pr~!
respectively. If t is a uniformizer of P, then rt is a uniformizer of Pr~1,
Let @ be a place of C(z), P an extension of ) in R and epg the ramifi-
cation index of the extension. Then Q7! is a place of C(2%) and Pr~!
is an extension of Q7! in 7R with ramification index epg. Let Qo and
Qoo be the places of C'(z) with unformizers z and 27! respectively. If Q is
a place distinct from Qg, Q, then Q7! is not ramified at the extension
C(z)/C(z%). Let Pi,...,P, be all the places of R that are ramified at
R/C(z) and not the extensions of Qp, Q.. Let Q; be the restriction of
P; to C(z). Then ep, > 1. Suppose that P is an extension of P!
in R and Q is the restriction of P to C(2). Since Q is an extension of

Qit™1,
€PQ = EPQEQQr—! = €pPQ;r-1 = €EPP,;r—1€pP,s—1Q,r—1

> ep,-1Q,,-1 = €pQ, > L.



Hence P is one of P;,...,P.. Since Po,r7!,..., P.7! are distinct, each
P.7~! has a unique extension P; and so €p pr-1 = [R : TR] = d. By the
equalities above,

ePJQ] = dePiQu'
This leads to a contradiction by choosing i for which ep,g, is maximum.

Therefore r = 0. By Riemann’s formula (Theorem 6.6 in Cohn [1]) for
the extension R/C(z%),

h k

2(g—1)=—-2dn + Z(epol -1+ Z(epoo. - 1),
=1 =1

where g is the genus of R, n = [R : C(z)] and the sums range over all
the extensions of QQg, () respectively. For only QQo, Q. are ramified at

the extension R/C(z) or C(z)/C(z%). Since

h h
ZePo._l ZdepoQo ) =dn — h,
1=1 =1
and
k k
Z (ep.; — Z dep_,0,, — 1) =dn —k,
1=1 =1
we have

—2<2(g-1)=-2dn+dn—h+dn—k=—h—k<-2.

Therefore ¢ = 0, h = k = 1. Hence Qo = P}, Qw = P} and so
(2) = QoQ5! = Py P.". Since g = 0, there is an element ¢ in R such that
(t) = PoP,, and R = C(t). Then zt~™ € C and R = C(z'/"). Because
f(z) € C[[z]] N C(2'/™), f(z) must belong to C(z).

Next suppose that f(z) satisfies (ii) and is algebraic over C(z). Then
R = C(z, f(2)) is a function field of one variable and

R c C(z)TR.
Hence we have
[R: C(2)]=[rR : C(z%)] > [C(2)TR : C(2)] > [R : C(2)].

Therefore R = C(2)TR D TR and so f(z) satisfies (i). This completes
the proof.
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