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PREFACE

One of the prominent features of incompressible fluid motion is the common occurrence of
vortical structures concentrated in a small fraction of the flow field. Among the important
vortical structures are vortex sheets, vortex tubes, and line vortices. In an effort to gain insight
into the nature of fluid motion, and the behavior of solutions of the equations which are used
to describe fluid motion, much research effort has gone into the analysis, both computational
and analytical, of the evolution of these vortical structures. The papers which are presented
in this collection, papers based on talks given at the U.C.L.A. Workshop on Vortex Methods,
held during May 20-22, 1987, describe some of the research in this direction. One aim of the
workshop was to bring together people carrying out theoretical and numerical investigations.
Vortex methods, by which we mean numerical schemes in which the computational elements
are pieces of vorticity, were particularly emphasized.

The first two papers in this collection are devoted to the study, by analytical and nu-
merical tools, respectively, of vortex sheets. The next two articles address computations of
three-dimensional flow and models of vortex stretching and turbulence. Articles five through
eight concern convergence results for vortex methods. The last two articles discuss differ-
ent techniques for achieving great improvements in the speed of vortex method calculations
without suffering losses in accuracy.

We would like to thank the participants, as well as the Office of Naval Research, who

provided funding, for making the meeting a success.

Chris Anderson
Claude Greengard
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LONG TIME EXISTENCE AND
SINGULARITY FORMATION FOR VORTEX SHEETS

Russel E. Caflisch*

Courant Institute of Mathematical Sciences
251 Mercer Street
New York University
New York, New York 10012, USA

ABSTRACT

The initial linear evolution of a nearly flat and uniform vortex sheet is given by the
Kelvin-Helmholtz instability. Asymptotic analysis and numerical computations of the subse-
quent nonlinear evolution show several interesting features. At some finite time the vortex
sheet develops a singularity in its shape; i.e. the curvature becomes infinite at a point. This
is immediately followed by roll-up of the sheet into an infinite spiral. This paper presents
two mathematical results on nonlinear vortex sheet evolution and singularity formation:
First, for sufficiently small analytic perturbations of the flat sheet, existence of smooth solu-
tions of the Birkhoff-Rott equation is proved almost up to the expected time of singularity
formation. Second, we present a construction of exact solutions that develop singularities
(infinite curvature) in finite time starting from analytic initial data. These results are derived
within the framework of analytic function theory. The analysis of singular solutions is an
independent construction of solutions first found by Duchon and Robert (1986,1988). All of
these results are in the analytic function setting, since that is the only space in which the
vortex sheet problem is known to be well-posed. We present a simple example to show ill-

posedness of the 2D Euler equations in the energy norm.

For two-dimensional, inviscid, incompressible flow, vortex sheets are a phenomena of fundamental and
technological importance. The perturbations of a nearly flat and uniform sheet will initially grow due to the
Kelvin-Helmholtz instability until nonlinear interactions become important. Asymptotic expansions (Moore
1979, 1984) and numerical computations (Krasny 1986, 1987, Meiron, Baker and Orszag 1982) show several
interesting features in the subsequent nonlinear evolution: At some finite critical time the vortex sheet develops
a singularity in its shape; the curvature becomes infinite at a point. Although this is a weak singularity, it
seems to be of fundamental importance since it is immediately followed by roll-up of the sheet into an infinite
spiral. The spiral starts off at the critical time with center at the singularity point and with zero outer radius;
then the radius grows as time evolves. However at any time after the critical time, the spiral has an infinite

* Research supported in part by the Air Force Office of Scientific Research under grant AFOSR 85-0017 and URI grant AFOSR 86-0352 and by the
Alfred P. Sloan Foundation.



number of tumns.

The first part of this paper focuses on the evolution of a vortex sheet up to and including the time of
singularity formation. The reasons for such interest in the singularity are that it is a distinctive nonlinear
phenomena, that its appearance signals the beginning of roll-up and that study of the singularity may clarify
several other mathematical and physical issues, such as well-posedness of the vortex sheet problem. The
second part of the paper presents an example of ill-posedness for the 2D Euler equations in the energy norm.
This is presented as partial justification for the use of analyticity in the existence and singularity formation

results: no weaker function space is known in which the vortex sheet equations are well-posed.

1. Existence and Singularity Formation for Vortex Sheets

The vortex sheet is described by a complex function z (y,2) = x(Y,t) + iy (v.t) in which ¥ is the circulation
variable and z is the complex position of the sheet. The evolution of the sheet is governed by the Birkhoff-

Rott equation

9,2* (V.t) = B(z1(vt) M
=@uiy PV [ o) —z(y e dy”

in which the integral is a Cauchy principal value integral and the last line defines the operator B[z]. Also
z*(y) = Z(T in which the bar denotes the usual complex conjugate. Our first result concems existence of
solutions of this equation and the approximation of those solutions.

EXISTENCE (Caflisch and Orellana 1986): Suppose that initially the vortex sheet has a small sinusoidal
perturbation, so that z(y,t) =y + iesiny in which € is small. Then the vortex sheet equation (1) has a smooth
solution for a time interval 0 < ¢ < 2xllogel in which x <1 and x = 1 as € —» 0. Moreover the solution

z(Y.t) is close to the solution z, (y,z) of Moore’s approximate equations; i.e.
lz—zp | < constant & @
This is an example of a more general theorem that applies for any small analytic, periodic perturbation of

a flat vortex sheet. The time of existence is nearly optimal, since asymptotic analysis (Moore 1984) indicates

that a singularity will form at the critical time ¢ = 2llogel + O (logllogel).

Moore’s approximate equations are
3,8 =h?d,h 3)
d,h =0d,¢ @)

in which g and h are (roughly speaking) the phase and amplitude for the perturbation of d,z and y = iy. More

precisely



in which
0ys (V) = =1 + (h(ivt)2 )2 e7811)2 (©6)

The proof of the Existence result is summarized as follows: Write z as z =y + 5 in which s is a small
perturbation, and decompose s into its upper analytic (i.e. positive wavenumber) and lower analytic com-

ponents as s = s, +s_. If s is 2n-periodic and analytic in the strip I/m Y| < p, then
Blz] = (UD{(IHs4) sy = I+ 's ) + 0(e™). ™

Omitting the error term at the end of (7) results in precisely Moore’s equations (3),(4). Existence for these
equations can be shown using the a priori estimates of Lax (1964) for a system of two conservation laws. A
solution for the full equation (1), with the error term in (7) considered as a perturbation, can be constructed
iteratively, using a variant of the abstract Cauchy-Kowalewski Theorem (Nishida 1977, Asano 1988) .

The advantage of Moore’s equations (3),(4) over the Birkhoff-Rott equation (1) is that the former are
differential equations; they do not contain nonlocal operators, such as the integral in (1). Moreover they give
an intuition about the mechanism for singularity formation on vortex sheets. Equations (5) and (6) are non-
linear hyperbolic equations with characteristics which extend in the y direction, that is the imaginary y direc-
tion. Thus we may expect singularities to propagate in the imaginary y direction until they hit the real vy line,
at which time they will appear physically. Moore (1984) showed that the expected form of the singularity
would be an envelope for the characteristics.

Although we are not yet able to mathematically analyze singularity formation with the detail described in
the previous paragraph, we can construct exact solutions of the Birkoff-Rott equation for which singularities
form at finite time starting from smooth initial data. This is the second main result:

SINGULARITY FORMATION (Caflisch and Orellana 1988): Let v > 0 and let € be small. There are
solutions z (y,r) of (1) that are analytic for + < 0 but have a singularity of order 1+v at y=0, ¢t = 0; i.e. for

t=0,y=0,
z =y+esgn(y lyIv! ®
2y = esgn(y) 1y ©)
In particular for 0 < v < 1, the sheet has infinite curvature (second derivative) at y=0, ¢t = 0.

The approximate vortex sheet strength 6 = 19z/3yI™" at the singularity time is plotted in figure 1. The
cusp at Y= 0 corresponds to the singularity. Such singular solutions were first constructed by Duchon and
Robert (1986,1988) using Fourier analysis and a fixed point theorem. Ours is an independent derivation which
uses the abstract Cauchy-Kowalewski method.

The proof of the Singularity Formation result is summarized as follows: Decompose z as above into

z =Y+ s, +s_. The linearized equations for s, and s_ are



0,5, =—(1/2)s*_,.

This is an elliptic system for which singularities travel at speeds + i/2. Thus singularities can appear on the
real line by coming in from the complex plane. Likewise a singularity at y = 0 initially will travel off into the
complex plane, leaving the solution to be analytic on the real line. Such analytic solutions of the linearized
equations (10) can be tumned into analytic solutions of the full nonlinear equation (1), by using the abstract
Cauchy-Kowalewski Theorem again. The resulting solution has a singularity at Yy =1 = 0 but is analytic in
IImy! < x(lt1/2) for t < 0. The constant x is smaller than 1, but nearly equal to 1 if the perturbation s is
small.

By shift of the time dependence of the solution in the Singularity Formation result, one finds analytic ini-
tial data for which the solution of (1) develops a singularity at a finite time. Furthermore by rescaling this ini-
tial data, one can find initial data of arbitrarily small size in any of the usual energy (Sobolev) nomms H", for
which a singularity forms in an arbitrarily short time. However such data would be large in the analytic norm.

A precise statement of this result is the following:

COROLLARY (Caflisch and Orellana 1988): Let € and & be arbitrarily small and let v be positive. For

any n, there is initial data z =y+s for (1) with Il s Il,. <g, so that an infinite (1 + v)-th derivative
develops in a time ¢ < d.

These results lead to a clearer understanding of the well-posedness of the vortex sheet problem. The
existence result shows that, within the class of analytic functions, equation (1) is well posed, in the sense that
small initial data (for the perturbation of the flat uniform sheet) leads to existence for a long time. The singu-
larity results show that singularities may form at some finite time. Moreover in any larger function space, such
as the Sobolev spaces, initial data of arbitrarily small norm may lead to an infinite (1 + v)-th derivative in arbi-
trarily short time. In particular this shows the vortex sheet problem to be ill-posed in H" for n > 3/2.

The restriction of analyticity (of z with respect to ), is a mathematical requirement for well-posedness
but may seem artificial physically. However we believe that restriction to analytic solutions is consistent with
the infinite Reynolds number limit, at least within certain flow regimes.

These singularity results may be a useful analogue for more difficult problems of singularity development
in fluid flows. An important outstanding mathematical problem is whether singularities form in finite time out
of smooth initial data for the incompressible Euler equations in 3D. Although smooth initial data in 2D is
known to lead to smooth solutions for all time, our result show that singular initial data (a vortex sheet) in 2D

can become more singular (infinite curvature of the sheet) in finite time.

2. Ill-Posedness in the Energy Norm for the 2D Euler Equations

We present a simple example showing that the Euler equations are not well posed in the energy norm.

This example shows that a bound on the total energy and entropy does not guarantee a bound on the wodulus



solution with velocity u (x,¢) for xe R? , such that

jlul’dx<1 an
RI
j|qu ldx < 1 12)
RZ
[1u@) - u©1%dx > 2 fore =e (13)
RZ

We call the integral in (13) the energy difference of the solution at two times.

The example will consist approximately of two circular patches each with constant vorticity and with
equal but opposite circulation. This is only the simplest example; other examples are expected to show
stronger instability.

This discussion is partly motivated by recent work of Majda and DiPerna (1987a,1987b,1988), who have
successfully analyzed weak solutions and their limits, as well as various desingularizations (such as nonzero
viscosity) using the energy norm and the constraint of finite total vorticity as in (11) and (12) (actually they
only require bounded energy and total vorticity on bounded sets).

As a preliminary, consider a small isolated vortex patch of constant vorticity with radius a and total cir-
culation I . The corresponding velocity field is

{(r/z )

r2
“= \r2ra?ré r<a 14

The velocity field near the patch contains energy E,. , which we call the local energy and which is of

size T?1loga | since

Epe = j lul?dx  =@2m) 'Tlloga (15)

Ixl<l
for a small. The upper limit |x | = 1 in this integral is convenient but not necessary.

Now consider two small patches of radius a, separation distance / (which can be taken to be 1) and cir-
culation I" and —-I" . Because the total circulation is zero, the energy is small at large distances from the
patches and most of the energy is in the local energies. To keep the total energy bounded as in (11) we
require

[ = lloga |77 (16)
This also ensures small total vorticity as in (12). The vortices act on each other like point vortices if

a< <R an

We also require that there is not significant shearing, so that the patches stay nearly circular (this is more than

is necessary). Thisis trueuptotimes ,ifrIVul < <1, ie.



TR < <1 18)
Under the conditions the vortex patches will move like two point vortices, with speed
V =Q2n TR 19
Since almost all of the energy is in the local energies of the vortex patches, these will be a significant change
for u in the energy norm as in (13) if
Vt> >a (20)
It is easy to see that conditions (16)-(20) are compatible for arbitrarily small t. Therefore, for any small € ,
there is a flow satisfying (11)-(13).
A modification of this argument yields two solutions that start off arbitrarily close in the energy norm,
but in arbitrarily short time have an 0(1) difference in that norm. These examples show that a function space

with the energy norm will not be a proper setting for analyzing certain properties, such as convergence of

numerical methods, for time dependent flows.
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COMPUTATION OF VORTEX SHEET ROLL-UP

Robert Krasny
University of Michigan, Mathematics Department
Ann Arbor, Michigan 48109

1. Introduction

In this article we shall review some recent developments for computing vortex sheet
roll-up. A vortex sheet is an asymptotic model of a free shear layer in which the transition
region between the two fluid streams is approximated by a surface across which the tan-
gential velocity component is discontinuous. A common theme in fluid dynamics is that
the vortex sheet model can be useful in understanding the dynamics of coherent vortex
structures observed in laminar and turbulent flows. If this goal is to be realized, reliable
methods for computing vortex sheet evolution must be developed.

At present, numerical methods are available for studying the initial value problem in
two space dimensions. For example, detailed analytical phenomena such as singularity
formation in the shape of an evolving periodic vortex sheet can be studied with existing
methods. The complex roll-up process and the interaction of several spiral vortices has
also been investigated numerically. These calculations have been stimulated by recent
theoretical results about vortex sheets and by progress in the convergence theory of general
vortex methods.

First, results for the periodic vortex sheet will be reviewed. Then an application to
some vortex sheet problems occurring in aerodynamics will be discussed in more detail.
Finally, some open questions and directions for further research will be summarized.

2. The Vortex Sheet Evolution Equation

A vortex sheet in two dimensional ideal flow can be described by a curve in the complex
plane, z(T',t) = z(T,t) + 1y(T,t), varying with time ¢t. The Lagrangian parameter I’
measures the circulation contained between a base point and an arbitrary point along the
vortex sheet [4]. The vorticity associated with a vortex sheet is in the form of a delta
function with support on the curve. The vortex sheet strength o = |9z/8T'|”" is the jump
in the tangential velocity component across the curve.

The vortex sheet evolution equation is,

%:/K(z—s)df. (1)

In this equation, z = z(T',t), # = 2(T',t), K(z) = 1/2niz is the Cauchy kernel and the
Cauchy principal value of the integral is taken. The bar over the time derivative on the
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left denotes the complex conjugate. The evolution equation is supplemented by an initial
condition for the vortex sheet z(T',0).

This basic evolution equation takes other forms depending upon the particular geom-
etry and initial conditions under consideration. The simplest class of problems concerns
a vortex sheet which is periodic in the z-direction. In this case, the integrand used is
K(z) = cot(mwz)/2i and the circulation parameter I' runs over a single period [0,1]. The
initial condition takes the form z(I',0) = I' + p(I',0). The function p(T',t) is periodic
in I and it describes the perturbation away from the equilibrium solution z(T',t) = T,
corresponding to a flat vortex sheet of constant strength.

A straightforward method of discretization was introduced by Rosenhead [19] in 1931.
Consider a finite number of point vortices per wavelength which approximately interpolate
the vortex sheet at equidistant values of I'. Thus the point vortices’ positions are z;(t) ~
z(T;,t) where I'; = jAT and AT = N~'. The point vortices evolve according to the
following system of ordinary differential equations,

dt

=N"'Y K(z;— ). (2)
k#3

By neglecting the singular term k£ = j, the sum appearing on the right side of equation (2)
is formally an O(IN~!) approximation to the principal value integral in equation (1). The
initial point vortex positions interpolate the exact initial vortex sheet z;(0) = 2(I';,0).
The viewpoint adopted here is that in order to study properties of the vortex sheet, one
must determine whether solutions of the point vortex equations converge as the dimension
N — oo. The next section reviews the theoretical results and numerical evidence relating
to this issue.

3. Singularity Formation in a Periodic Vortex Sheet

The vortex sheet model does not include any physical mechanisms to stabilize the
short wavelength modes. In fact, the linearized initial value problem for perturbations of
a flat, constant strength vortex sheet is subject to the Kelvin-Helmholtz instability [4].
Just as in the classical example, i.e. the Cauchy problem for the Laplace equation, the
linearized vortex sheet initial value problem is not well-posed in the sense of Hadamard.
However, if the initial perturbation p(I',0) is an analytic function of I' then the nonlinear
vortex sheet problem has an analytic solution in some time interval [21,5]. Analyticity of
the solution is equivalent to controlling the amplitude of the short wavelength modes.

These Cauchy-Kovaleski results for the periodic vortex sheet actually were preceded by
an asymptotic analysis of the nonlinear problem by Moore [16]. For an initial perturbation
consisting of a single Fourier mode of amplitude ¢, Moore’s analysis indicates that a
singularity forms in the vortex sheet at time t.(¢) ~ loge™'. Meiron, Baker & Orszag
[13] studied the vortex sheet’s Taylor series in time around t = 0 and obtained a similar
comclusion. At the critical time, the vortex sheet strength has a finite amplitude cusp and
the curvature has an infinite jump discontinuity at isolated points. However, the sheet’s
slope remains bounded and its tangent vector is continuous.

Previous numerical studies of this problem using Rosenhead’s point vortex approxi-
mation have experienced difficulty in converging when the number of point vortices was
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increased [4]. Explaining the source of this difficulty and providing a remedy for it have
been longstanding issues [17,18,20].

In a numerical solution of the point vortex equations (2) one can examine the discrete
Fourier transform px of the computed perturbation quantities p; = z; — I';. Using this
discrete Fourier analysis to diagnose the solution, it was shown that computer roundoff
error is responsible for the irregular point vortex motion that occurs at a smaller time
as the number of points is increased [9]. This source of computational error can be
controlled either by using higher precision arithmetic or by using a new filtering technique.
The numerical evidence indicates that the point vortex approximation converges as N —
oo up to but not beyond the time of singularity formation in the vortex sheet. Good
agreement is obtained with Moore’s relation for the critical time’s dependence upon the
initial amplitude.

4. Roll-Up Past the Critical Time

When a singularity forms in the solution of a nonlinear evolution equation, it may
still be possible to extend the solution beyond that time in a way which ensures that the
extension has physical significance. A classical example is shock formation and the theory
of weak solutions to nonlinear hyperbolic equations [12]. Even though the shock solution is
a discontinuous function, it serves as a useful approximation to a viscous profile. One can
ask whether a similar theory can be constructed for the vortex sheet evolution equation.

One approach to extending the vortex sheet solution past the critical time is mo-
tivated by Chorin’s “vortex blob” method [6,1]. The singular kernel K(z) appearing
in the vortex sheet equation (1) is replaced by a smooth kernel K4(z) which depends
upon an artificial smoothing parameter §. For example, in free space one can choose
Ks(z) = K(2)|2]* /(|z|* + 6%) as the desingularized kernel. For § > 0 the solution of this
“§-equation” is a curve which approximates the vortex sheet. The proposal is to view the
vortex sheet as the limit of these desingularized solutions as the smoothing parameter §
tends to zero. To discretize the §-equation, one simply uses the smooth kernel K4(z) in
place of K(z) in the system of ordinary differential equations (2). For § > 0 therefore the
point vortex is replaced by a “vortex blob”.

This approach has been applied to the periodic vortex sheet problem [10]. Linear
stability analysis shows that the vortex sheet’s short wavelength instability is diminished
when § > 0. The resulting ordinary differential equations are numerically more tractable
since the computer roundoff error difficulty is not as severe. Solutions of the §-equation
are obtained for a fixed value of §, at a fixed time ¢ > ¢. by integrating the vortex blob
equations and converging to the limit N — oo. Detailed numerical convergence studies
also indicate that the sequence of solutions of the §-equation converges pointwise in I’
as § — 0 and that the error has an asymptotic expansion in powers of §. These results
suggest that in this weak sense, as a limit of smooth curves, the vortex sheet rolls up into
a double-branched spiral past the critical time.

There are other possible ways of desingularizing a periodic vortex sheet to obtain
candidate weak solutions. Baker and Shelley [3] study the dynamics of a layer of constant
vorticity in the limit of vanishing thickness. A key question is whether this sequence
converges to the same object that solutions of the é-equation converge to, particularly
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Figure 1. Periodic vortex sheet roll-up [10]. Two periods of the circulation parameter are
plotted. The value of the smoothing parameter is § = 0.5.



