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Preface

Since the appearance of Brouwer fixed point theorem in 1912 and its subse-
quent generalizations, fixed point theorems provided powerful tools in demon-
strating the existence of solutions to a large variety of problems in applied
mathematics. However, from the computational standpoint, their usefulness was
limited. Up to 1967 all computational methods used for computing an approxi-
mate fixed point for a given map were based on iterative procedures that
required additional restrictions on the map to guarantee convergence.

In 1967 H. Scarf developed a finite algorithm for approximating a fixed point
to a continuous map from a simplex into itself. Scarf’s algorithm is based on
first subdividing the simplex into finite subsets called primitive sets and then
utilizing Lemke’s complementarity pivoting procedure. This algorithm provided
the first constructive proof to Brouwer’s fixed point theorem.

Scarf's work stimulated considerable interest. During the following few years
several important refinements and extensions to his algorithm were developed.
Among those are the works of H. Kuhn, B. C. Eaves, and O. Merrill.

These algorithms were applied to a number of test and real problems, with
reasonable degrees of efficiency. During this period there was also considerable
interest in a related unifying model, the so-called ‘“complementarity problem,”
the problem of finding a nonnegative vector whose image under a given map
is also nonnegative, and such that the two vectors are orthogonal. In fact, the
fixed point problem over the nonnegative orthant of a finite-dimensional
Euclidean space is equivalent to a complementarity problem.

In early 1974 several researchers expressed an interest in holding a conference
to bring together those who were active in the fields of fixed point algorithms,
the complementarity problem, and those who were involved in their applica-
tions to economics and other problems.

The first International Conference on Computing Fixed Points with Applica-
tions was held in the Department of Mathematical Sciences at Clemson
University, Clemson, South Carolina, June 26-28, 1974.

The Conference was sponsored by the Office of Naval Research and the
Office of the Army Research Center. The participants included mathematicians
and economists from several European countries, Japan, and the United States.

Nine one hour invited addresses and twelve one half hour contributed papers
were presented during the Conference. Each presentation was followed by a half
hour discussion period. All papers were refereed, edited, and finally approved by
the authors before their publication in this volume.



X PREFACE

Professor Herbert Scarf who attended the Conference and participated actively
in the discussions was kind enough to write a very illuminating introduction to
the proceedings.

The organizing committee consisted of J. Kenelly, C. J. Ancoin, C. B.
Garcia, and S. Karamardian. Mrs. M. Hinton was most helpful in her role as
secretary of the conference. Ms. Leslie Cobb typed the manuscripts, Ms. Gini
Nordyke drew the technical figures; and Ms. Lynn Mayeda did the final proof-
reading. We extend our warmest appreciation to these dedicated persons and
organizations.
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Introduction

Herbert E. Scarf



2 HERBERT E. SCARF

I would like to take this opportunity to give a person-
al view of some of the major developments in the field of
fixed point computations during the last half dozen years.
As the present volume clearly indicates, the field has prog-
ressed substantially during this brief period. My selection
of topics will necessarily omit many contributions of con-
tinuing importance, which a more leisurely discussion would
include.

It may be difficult to recapture the view which many of
us had some ten years ago ——- that the problems of mathemati-
cal programming fall naturally into two quite distinct cate-
gories in terms of whether or not they can be solved numeri-
cally. On the one hand, there were powerful techniques for
solving the linear and non-linear programming problems aris-
ing when the production side of the economy is studied in
isolation. But on the other hand as soon as a number of in-
dependent agents were introduced into the problem —-- either
as players in an n-person game or consumers in a model of
economic equilibrium -- we were forced to be content with
theorems advising us of the existence of a solution but with
no indication whatsoever of a constructive method for its
determination.

By the late 1960's —- the date which I would like to
take as the point of departure for the present discussion --
this difficulty had, of course, been overcome. A variety of
novel computational techniques had been developed for the
approximation of the fixed points of a continuous mapping or

correspondence. A substantial number of numerical examples
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had been successfully attempted and it had become clear that
the efficiency of these algorithms was sufficiently high so
as to justify their application to realistic problems of mod-
erate size. Moreover, these algorithms were sufficiently
flexible, so that a given problem might be solved by one of
several methods —-- selected so as to exploit the features of
the particular problem in question. A survey of the state of
the art at this moment of time, together with a number of
specific applications may be found in the monograph, The Com-

putation of Economic Equilibria, written in collaboration

with Terje Hansen.

In order to introduce the discussion of recent develop-
ments, it is useful to remark on one major drawback of the
early techniques: they typically required that the computa-
tional procedures be initiated on the boundary of the under-
lying simplex on which the mapping was defined -- in some in-
stances at a vertex of the simplex -- and that a rough mea-
sure of accuracy be assigned in advance. If, after the com-
pletion of the computation, the accuracy were judged to be
insufficient, the only available recourse was to perform the
entire computation again with a finer grid size. The results
of the earlier computation, which provided a rough indication
of the location of the answer, were completely discarded on
the grounds that they could not serve as the starting point
for a subsequent attempt at higher precision.

The ability to obtain high precision -- say seven or
eight significant digits -- with fixed point methods may be
of considerable importance even if the underlying data of
the problem lack a similar degree of accuracy. In order to
estimate the consequences of a particular change in economic

policy -- for example, an increase in tariffs -- a general:
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equilibrium model will be solved numerically both before and
after the imposition of that policy. But then in order to
assert that the policy will lead to a 5% increase in the
price of a certain commodity or a 10% decrease in its level
of production, these prices and production levels must be
calculated with sufficiently high accuracy to reflect the
difference in their values,

There are, of course, well established numerical tech-
niques, such as Newton's method, which converge locally to
the solution of a system of non-linear equations. In the
early programs, I frequently tacked on, after the fixed point
approximation, a relatively crude variant of Newton's method
which was written specifically for the problem at issue. The
results were sufficiently satisfactory so that I know of at
least one user who discards fixed point methods completely
and is content with guessing an answer which is subsequently
refined by Newton's method.

The major drawback of Newton's method -- aside from its
apparent lack of harmony with fixed point techniques -- is
that a specific program is required for any basic variation
in approach to the problem being analyzed. A general equi--
librium model, to take one example, may be solved in three of
four quite distinct ways depending on its special structure;
ideally one would like a method for obtaining high accuracy
which is independent of the specific technique selected.

One of the major advances of recent years —- introduced
by Curtis Eaves -- may be viewed as a technique which permits
a continued improvement in accuracy without recourse to
Newton's method, though its ramifications are considerably
greater than this somewaht technical justification would sug-

gest. As distinct from earlier authors, Eaves does not work
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with a simplicial subdivision of the simplex on which the
mapping is defined, but rather with a subdivision of the cyl-
inder formed by taking the product of this simplex with a fi-
nite interval. The mapping whose fixed point we wish to de-
termine is placed on one end of the cylinder. A trivial map-
ping of the simplex into itself, whose fixed point is unique
and can be placed in an arbitrary location, appears on the
opposite end. The two mappings are then joined by a piece-
wise linear homotopy throughout the cylinder, Given this
setting, the earlier methods of simplicial pivoting can be
extended so as to construct an algorithm which begins at the
pre-assigned location on the end bearing the trivial mapping,
and which terminates on the opposite end with an approximate
fixed point of the mapping in question.

At the cost of one additional dimension, Eaves' methods
permit us to initiate the computation at an arbitrary point
and to continue without starting the procedure again, until
the desired degree of accuracy is reached. In his remarkable
thesis, Orin Merrill describes his independent discovery of a
similar technique. Merrill takes the opposite ends of the
cylinder described above to be close together, so that each
simplex in the decomposition of the cylinder touches both
ends. His method (given the illuminating name of the '"sand-
wich" method by later writers) therefore moves from the ini-
tial guess to the opposite end of the cylinder very rapidly
and as a consequence must be content, in each iteration, with
a modest refinement of the previous guess. This approxima-
tion, however, may be taken as an initial guess for a sub-
sequent round of the algorithm; the basic cycle is then re-

peated until a satisfactory accuracy is obtained.
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Several variations of these two methods have been pro-
grammed and the substantial computational experience obtained
by Merrill, Kuhn, Wilmuth and others indicate that they per-
form remarkably well in contrast to the older techniques
which had previously been available. I have not yet seen an
explicit comparison to the naive approach in which a rough
guess obtained by a fixed point technique is refined by
Newton's method, but I feel sure the algorithms of Eaves and
Merrill will remain one of the major approaches to fixed
point computations in the years to come.

During the last decade all of the fixed point methods
with which I had been familiar were based upon a decomposi-
tion of the simplex into combinatorial objects such as sub-
simplices or primitive sets. These objects permit a replace-
ment operation which allows a discrete movement from an ini-
tial guess to a final approximation. The difficulties in-
volved in solving a system of non-linear equations and in-
equalities by directly tracing out a path leading to the
solution were replaced by a combinatorial approach to
Brouwer's theorem with a constructive flavor,

In the 1950's, however, it had become apparent to math-
ematicians that many of the intricate arguments of combina-
torial topology could be replaced by constructions which were
simpler and more intuitive, if adequate differentiability as-
sumptions were placed on the underlying manifolds and func-
tions specifying the particular problem. For example, in a
paper written in 1963 Morris Hirsch gives an elegant proof of
Brouwer's theorem involving simplicial subdivisions, which
has many points of similarity to our computational procedures.

In a final paragraph he remarks that an alternative proof can
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be based on the concept of '"regularity'" of a differentiable
map.

For many of us one of the great surprises of the con-
ference at Clemson was the paper by Kellogg, Li and Yorke
which presented the first computational method for finding a
fixed point of a continuous mapping making use of the con-
siderations of differential topology instead of our customary
combinatorial techniques. In this paper the authors show how
Hirsch's argument can be used to define paths leading from
virtually any pre-assigned boundary point of the simplex to a
fixed point of the mapping. Stephen Smale has also communi-
cated to me recently the results of a similar study analyz-
ing, in detail, the systems of differential equations which
arise in this fashion. Both Smale and the three authors men-
tioned above make the important observation that the path
which is being calculated by their methods —-- near the fixed
point —-- is virtually identical with that which would be fol-
lowed were Newton's method being used.

In order to explain why I find this observation impor-
tant, let me begin by saying that the differentiable methods
consist essentially of tracing the solutions of a system of
non-linear equations, say F(x) = ¢ , which typically in-
volve one less equation than unknown. Under suitable as-
sumptions this set of solutions forms a one-dimensional dif-
ferentiable manifold which, by the proper selection of the
constant ¢ , will have a component leading from the pre-
assigned boundary point to a desired fixed point. But as
Eaves and I have shown in a recent paper, virtually all of
the simplicial methods which have dominated the horizon dur-
ing the last decade can be put in an identical form with the

function F being piecewise linear rather than
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differentiable. In other words, there is essentially no dis-
tinction between the differentiable methods and those we have
been in the habit of using, at least in their general out-
lines. (There are, of course, technical distinctions: dif-
ferential equations may have great advantages over difference
equations, since the step size for the former need not be as-
signed in advance -~ on the other hand a discrete system may
more easily accommodate mappings which are not smooth).

The great similarity between the combinatorial and dif-
ferentiable algorithms suggests to me the possibility that a
discrete method -- such as Eaves' -- in which the grid size
is continually decreasing, may very well be behaving like
Newton's method near the solution. If this argument could be
made precise, it might provide an explanation for the unex-
pectedly small number of iterations typically required by
fixed point methods, and their virtually linear behavior in
the neighborhood of the solution. It might also suggest a
similarity between the sophisticated methods based on homo-
topy arguments and the naive approaches in which a fixed
point approximation is followed by a conventional Newton's
method. The paper by Fisher, Gould and Tolle, presented
here, may represent a step in the direction of understanding
these phenomena.

A number of authors, including Shapley, Lemke, Kuhn,
and Scarf and Eaves have recently been concerned with the ap-
plication of the topological concepts of index theory to
fixed point methods. It is possible to associate with each
solution of a particular problem —-- say a completely labelled
simplex —-- an index which is either +1 or -1 . The index
is defined fully in terms of the data specifying the solution

and is independent of the path which has been used in



