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Preface

Wheén John Chamberlain died suddenly in October 1974, his coworkers lost
not only a much-loved friend but also a most able and diligent colleague.
During his brief career John had made major contributions'to spectroscopy
and seemed set to achieve an eminent position and to play a senior role in
international science. His main field was asymmetric or dispersive Fourier
transform spectrometry and he was, in fact, together with E. E. Bell in the
USA, mainly responsible for the development of this branch of the art. It is
indeed sad that these two, who had known each other for such a brief time,
should die within a year or two of each other. John had known that his life
was at risk from the high blood pressure to which he was subject, but he
never allowed this to influence him in any way and was always a cheerful
and considerate companion whose sensitivity and regard for the feelings of
others was common knowledge. '

Outside his scientific work, John’s great passion was music and he built up
a large collection of records, together with a superb reprcduction system to
indulge it. However, much of his spare time at home was taken up with a
major project to which he was devoted—the writing of & comprehensive
textbook on Fourier transform spectrometry. This he had been painstakingly
assembling and at the time of his death there were twenty chapters in
various stages of completion. His colleagues felt that the best memorial they
could raise to him, as a scientist, would be to ensure that this book was
published. However the text, as it stood, required considerable modificzaiioa
and pruning. Morzover there were very fzw diagrams and those mostly
consisted of thumbnail sketches.

We decided therefore to edit the book down to manageable proportions,
to supply the necessary diagrams, and to revise the text in accord with
modern advances and with the newer ideas that had emerged since 1974. Tc
do all this was a major task and we soon realized that we could not do
simple excision and grafting job. In the cnd we decided to redraft severa!
sections of the booi completely, but guided by John’s original text and by
the concepts which he had obviously chosen. We have done our best tc
remain faithful to iis original conception of the boolk within these limita-
tions and we hope that, were he alive now, he would approve of whai we
have done. We must however point out that Chapter 10 is entirely ours. It
was a chapter that we felt was necessary, but the advances that hawve
occurred in the field of computation made John’s original skztches com-
pletely out of date. In the light of this, a completely new chapter. eb iniiio,



xii

seemed in order, but we take sole responsibility for it. Throughout the
period when we were redrafting and revising the text we received help from
several of our coileagues, but we would especially like to acknowledge the
assistance of J. R. Birch and J. W. Fleming whose careful reading and
criticism of each section of the book as it appeared helped to eliminate many
errors and obscurities.

We dedicate this book therefore to our late much-missed colleague in the
hope that it will prove helpful to present and future generations of inter-
ferometric spectroscopists and in some small way replace the personal help
which John would undou stedly have given had he lived.

Summer, 1978 G. W. CHANTRY
N. W. B. StonE
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CHAPTER 1

Introduction

1.1. SPECTROSCOPY

Spectroscopy is the term describing the study of spectra; spectrometry is the
quantitative measurement of the form of a spectrum. Fellgett' has proposed
the term spectrology as.a possibly more precise description of the subject.
Strictly speaking, spectroscopy implies the visual observation of a spectrum,
but the term is so widely understood in the more general sense to describe
the subject as a whole, that it will be used with that meaning here.
Spectrometry will have the meaning given above; spectrology will not be
used.

1.1.1. Absorption spectrometry

The quantitative investigation of spectra involves the determination of
precise information about the energies (that is, frequencies or wavelengths)
at which systems absorb or emit electromagnetic radiation and the extent to
which the absorpticn or emission occurs (that is the intensity). Infrared and
long-wave spectroscopists deal, for the most part, with passive or absorbing
systems on account of the feeble spontaneous emission at low frequencies.
The specimen under study is probed, therefore, with radiation, the exact
state of which before and after interaction with the system yields the spectral
information required. The optical properties of a specimen are completely
specified when the complex refractive index 7i(o) at wavenumber o is
known.T This quantity may be expressed in either of the alternative forms

i(e) =n(o)[1—-ik(o)]= n(e)—ik(o) (1.1a)
or
Alo)=n(o)—i(a(a)/d4mo), (1.1b)

T Note: the spectral energy variable will be generally measured by the wavenumber o having
the dimensions of reciprocal length and the other variables, i.e. frequency v (Hz), wavelength
(in vacuo) A (m), circular frequency w (rads™!), are related to this by

v w

1

og=—= R

A ¢ 2mc

where c is the speed of light (299.8 X 10°ms'). The SI unit for o is m~!, but the cm ' persists
as the practical unit. In the literature the symbols ¥ and sometimes v will be encountered with
the same meaning as o used here.
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Figure 1.1. Example of a transmission spectrum 7(o) showing
the wavenumbers such as o; that are of interest to the spectros-
copist

where n(o) is the real refractive index, k(o) is the extinction coefficient,
k(o) =n(o)k (o) is the absorption index and a(a) is the power absorption
coefficient (neper m™').t

The real refractive index is related to the speed v(o) of the waves in the
medium according to the relation

n(ag)=c/v(o) (1.2)

given by Maxwell; the absorption coefficient measures the intensity (or
power) attenuation of the electromagnetic waves after travelling unit length
within the (isotropic) medium.

The transmissivity of a bounded specimen of thickness d is given in terms
of the incident and transmitted powers (o) and I(o), respectively, by

(o) =I(o)/Io(a) (1.3)

and has values lying in the range 0<17(o) <1. The spectroscopist frequently
measures the variation of 7(o") with o so that he can locate the positions of
minima or points of inflection in 7(o)—Figure 1.1. These two types of
turning point are taken to represent the locations of absorption bands or
lines. The information obtainable from measurements of the positions of
absorption features is adequately discussed in textbooks dealing explicitly
with spectra and their interpretation.> However, to derive the maximum
amount of information from a spectroscopic experiment it is desirable to
determine an absolute measure of the absorption. In practice, the apparent
loss of energy which the beam experiences in traversing the specimen arises
from single and multiple reflection effects at the interfaces in addition to the
true absorption mechanisms. One may write, therefore,*

7(7) = 1A(0)TR(0, d), (1.4)

T The use of the neper (Np) to measure power absorption is discussed by Chamberlain and
Chantry.?



where
TA=exp[-a(a)d] (1.5)

is the transmissivity corresponding to the purely absorptive loss and 1x(0o, d)
represents the transmissivity ascribable to all causes other than purc absorp-
tion, principally the reflection effects (see ref. 4 for detailed treatment).
Fguation (1.5) is the mathematical formulation of the Bouger-Lambert
Law. It follows from (1.3), (1.4), and (1.5) that

1 (L)) 1 1 L
“(")“d"’(ua)) dln(TR(tr,d)) [Npin™]. (1.6)

The second term represents a correction which must be applied to the
combination

1 (Io)
g0 (1( )

of the measured quantities in order to arrive at the true absorption coeffi-
cient. Unfortunately, it is very common to find that absorption coefficients
quoted in the literature are of the erronecus a°(o) kind, and there is
seldom sufficient additional information from which the correction can be
inferred.

The calculation of Tx(o, d) in the general case is very difficult and it is
desirable, if possible, to eliminate it from the calculation by a suitable
modification of the experimental technique. For a suitably thick specimen,
not only will 7x(o, d) be much reduced relative to 7,(c), but it becomes
possible virtually to eliminate the multiple-beam interference effecis and
hence make 7g(o, d) essentially independent of d. If then we have that
tr(0, d) — 1x(0), it follows that, by making measurements of the powers
transmitted by two specimens of identical composition but differing thick-
nesses d, and d,, it is possible to determine a(c) directly since

) «*(@) [Npmi ' (1.7)

1 I,(0) N
alo)=g—5n (12( \) [Npm') (1.8)
From this equation it will be seen that reliable determination of a(o)
depends on accurate measurement of specimen thickness. This becomes
difficult when a(o) is large, for then d will have to be very small, and
consequently hard to measure accurately, if 7,(o) and 7(c) are not to be too
small for meaningful measurement.

The scope of modern spectroscopy has recently been considerably ex-
tended in that, in addition to being able to determine the characteristic
wavenumbers g, it is now possible to determine the integrated absorption
strengths

A= J’ a(o)do [Npm™2]. (1.9)
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Figure 1.2. Absorption spectrum corresponding to the transmis-
sion spectrum of Figure 1.1. The shaded area yields the inte-
grated absorption strength A, = { a (o) do of the feature at o;

A, is the area. of the ith absorption feature and is a measure of the strength
of the oscillator of frequency v, = co,.

1.1.2. Emission spectrometry

Emission spectra may be continuous or have a discrete structure. While the
observer may be concerned with both the shape and the magnitude of the
spectrum in either case, he is frequently interesicd in the absolute power
level of the continuous spectra and in the shapes and relative intensities of
the features in the line or band spectra. Since the measurements concern the
source rather than any passive absorbing system, it is important to know the
transmission characteristic of the complete spectrometric system over the
range of interest. This knowledge is not easily acquired.

1.1.3. Resolution and resolving power

The amount of detail seen in an experimental spectrum is limited and can be
described in terms of the resolution R or the resoiving power ®R. The
resolution R is measured in frequency or wavenumber units and represents
the smallest spectral interval that can be meaningfully discerned. Hence, the
smaller the numerical value of R the more detailed the spectrum and the
better the resolution. Every spectroscopic instrument has a scanning function
(or apparatus function) which we can regard as the observed spectral record
obtained for a- strictly monochromatic input to the spectrometer. The
function has a finite width which is related to the resolution limit. The choice
of definition of the criterion for the resolution limit is to some extent
arbitrary, but more detailed treatment, in Chapters 6 and 8, discusses the
various definitions that may be employed.

Sometimes it is more convenient to describe the quality of the resolution
in terms of the resolving power R, which is a measure of the ability to
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separate close spectral lines. R is a pure (dimensionless) number given by
R(o)=o0/R. (1.10)

It is obvious that R is numerically greater the better the detail seen in the
spectrum.

1.2. FOURIER TRANSFORM SPECTROMETRY

It is, of course, possible to measure I(o), and hence 7(o), directly using a
number of well-established techniques. There are, however, alternatives, of
which an important one is the method: of Fourier transform spectroscopy
(FTS). This may be defined as the technique whereby a spectrum is deter-
mined by the explicit application of a Fourier transformation to the output
of an opticalt apparatus—generally a two-beam interferometer.

The procedure is, roughly, to divide a beam of radiation from the source
inwo two parts; make provision for the introduction of a known, variablc
phase delay of one part relative to the other; and then detect the resultant
power when the two beams are recombined. This power is recorded as a
function of the phase delay and shows fluctuations that are basically
periodic. When all the detailed fluctuations of this power record are subject
to Fourier transformation we obtain a fuily characterized spectrum; when
only the trends shown by the fluctuations are subject to Fourier transforma-
tion we obtain a partially characterized spectrum. This latter technique is
suitabie for application only to spectra having a narrow bandwidth.

1.2.1. Fully characterized spectrometry

In fully characterized spectrometry, the required spectrum, the power dis-
tribution cf the detected radiation as a function of frequency (or
wavenumber), is obtained by Fourier transformation of the variable part of
the record of power versus phase delay. As we shall see below, we call the
total gecord the interference function and the variable part of it the inter-
ferogram. The spectrum is, therefore, the Fourier transform of the inter-
ferogram. That there is an explicit dependence of the interferogram on the
spectrum may be simply seen from the following discussion.

Consider the schematic interferometer shown in Figure 1.3. The partial
beam that has traversed the path XP,Y io the detector has travelled a
distance that is greater than that travelled by the other beam along XP,Y by
an amount x (0= x <) which we ¢all the path difference. By assuming the
interferometer to be otherwise symmetrical and evacuated, the optical and
geometrical path differences are identical. Because of the path difference x,

7 We shall use the term ‘cptical’ to mean an array of lenses, mirrors, etc. when pertaining to
apparatus, and to mean some part of A(o) when pertaining to constants; the terms ‘light’ and
‘visible’ will be applied only to radiation detectable by the eye. Optical path length is defined, as
usual. by the product refractive index X path length.
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Figure 1.3. Schematic arrangement for a two-beam inter-

ferometer. The radiation from the source S is divided,

within the interferometer, into two pariial beams passing,

respectively, via P, and P,. These beams recombine before

falling on the detector, which they reach with a relative

phase delay determined by the path difference XP,Y—
XP,Y within the interferometer

the two beams arrive at the detector with a phase delay 2mox for any
component ¢ and show interference which is governed by this delay. As we
shall see below, the power at the detector is, in fact,

I(x) = Bio) do + B(o) cos 2max do [W] (1.11)

for each spectral component of power B{o) do in the interval ¢ to o +do.
We assume the contribution from each path SP,D and SP,D to be the
same, 3B(o) do.

When the source is stricily monochromatic and of wavenumber o, the
power from each partiai bean is 6, (the Russian symbol 6 is known as ‘buki’)

H{x)=6,(1+cos Zray>) (1.12a)
= 26, cos” Moox W] (1.12b)

and is the interference funciion. It has the far liar form of :mine fringe
which extend to infiniie values of x without change of either I.,, =26, o1
I‘, w=0 (Figure 1.4). If, however, the source is made more realistic and
given a ﬁnrim but small, width Ao the fringes are still basically cosinusoida!
of period 04 '; the interierence betwezn components from either side of the
feature is now construciive at x =0, bu! becowes increasingly destructive as
x increases. This has the effzct of modulating the fringes whose 1, falls to
zero at about x=Acg .

When "the source has a broad bandwidth, such as is required for most
spectroscopic measureinents, all components are in phase at x =0, but the
deiected intensity fluctvates rapidly to zerc as x is increased and we have
the equivaient of white light fringes chserved in broad-band visible inter-
ferometry. The detected power is given by adding all the components
represented singly by eguation (1.11):

=2

I(x)= J' Big)do+ [ B{¢) cos 2mex do [Wi {
) )

(N
—
w0



Because
[{(0)= 2[1.8(11) do [W] (1.14)
0

when x =0, we may write

I(x)=3I{(0)+ I B{(o) cos 2mox do [W] (1.15)
)

for the interference function, noting that it consists of a part 31{0)=1T

invariant with- x, and a variable part I(x)—1I= F(x). We call this variable

part the interferogram and rewrite equation (1.15) in terms of it as

F(x)= jr B(o)cos 2mox do [W], (1.16)
which shows that the interferogram depends on the spectrum according to a
(o)A [Wm] 1004 (W)
-3 o

(a)

ito)h [wm| om0 ] x[m]
(b)

o o[m] X[m

l(o)4 [Wm] 1004 (W] ]
(c)

51(0)

om] x[m]
Figure 1.4. Relation between the detected spectrum [(o) and the two-beam interfer-

ence signai I(x) produced by it: (a) monochromatic spectrum; (b) quasi-
monochromatic spectrum; (c) broad-band spectrum.



