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Preface

These lectures intend to give a self-contained exposure of some techniques for
computing the evolution of plane curves. The motions of interest are the so-called
motions by curvature. They mean that, at any instant, each point of the curve moves
with a normal velocity equal to a function of the curvature at this point. This kind of
evolution is of some interest in differential geometry, for instance in the problem of
minimal surfaces. The interest is not only theoretical since the motions by curvature
appear in the modeling of various phenomena as crystal growth, flame propagation
and interfaces between phases. More recently, these equations have also appeared in
the young field of image processing where they provide an efficient way to smooth
curves representing the contours of the objects. This smoothing is a necessary step for
image analysis as soon as the analysis uses some local characteristics of the contours.
Indeed, natural images are very noisy and differential features are unreliable if
one is not careful before computing them. A solution consists in smoothing the
curves to eliminate the small oscillations without changing the global shape of the
contours. What kind of smoothing is suitable for such a task? The answer shall be
given by an axiomatic approach whose conclusions are that the class of admissible
motions is reduced to the motions by curvature. Once this is established, the well-
posedness of these equations has to be examined. For certain particular motions,
this turns to be true but no complete results are available for the general existence of
these motions. This problem shall be turned around by introducing a weak notion
of solution using the theory of viscosity solutions of partial differential equations
(PDE). A complete theory of existence and uniqueness of those equations will be
presented, as self-contained as possible. (Only a technical, though important, lemma
will be skipped.) The numerical resolution of the motions by curvature is the next
topic of interest. After a rapid review of the most commonly used algorithms, a
completely different numerical scheme is presented. Its originality is that it satisfies
exactly the same invariance properties as the equations of motion by curvature. It
is also inconditionally stable and its convergence can be proved in the sense of
viscosity solutions. Moreover, it allows to precisely compute motions by curvature,
when the normal velocity is a power of the curvature more than 3, or even 10 in
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some cases, which seems a priori nearly impossible in a numerical point of view.
Many numerical experiments are presented.

Who this volume is addressed to?

We hope that these notes shall interest people from both communities of applied
mathematics and image processing. We tried to make them as self-contained as
possible. Nevertheless, we skipped the most difficult results since their proof uses
techniques that would have led us too far from our main way. Indeed, these lectures
are addressed to researchers discovering the common field of mathematics and im-
age processing but also to graduate and PhD students wanting to span a theory from
A to Z: from the basic axioms, to mathematical results and numerical applications.
The chapters are mostly independent except Chap. 6 that uses results from Chap. 4.
The bibliography on every subject we tackle is huge, and we cannot pretend to give
exhaustive references on differential geometry, viscosity solutions, mathematical
morphology or scale space theory. At the end of most chapters, we give short bibli-
ographical notes detailing in a few words the main steps that produced significant
advances in the theory.
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Part I

The curve smoothing problem
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1

Curve evolution and image processing

In this volume, we study some theoretical results and the numerical analysis of the
motions of plane curves driven by a function of the curvature. If C' is a smooth (say
C?) curve, they are described by a partial differential equation (PDE) of the type

oC
%0 6N, (1)

where « and N are the curvature and the normal vector to the curve. This equation
means that any point of the curve moves with a velocity which is a function of the
curvature of the curve at this point. (See Fig. 1.1.)

Fig. 1.1. Motion of a curve by curvature. The arrows represent the velocity at some points.
Here, the velocity is a nondecreasing function of the curvature

These equations appear in differential geometry because the curvature is the varia-
tion of the area functional for hypersurfaces. (The length for curves.) In particular,
the case G(k) = k can be considered as the gradient flow of the area (length for
curve), playing an important role in the theory of minimal surfaces. These equations
are also related to the description of crystal growth, where the velocity may also
contain an anisotropic term depending on the normal vector. Generally speaking,
curvature motions often appear in the motion of interfaces driven by an inner energy
or tension, as flame propagation, melting ice, or rolling stone. Surprisingly enough,
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the motions by curvature have recently appeared in the field of image processing.
More precisely, the theory developed in the core of this monograph aims at solving
one of the steps that belongs to what has been called low-level vision. It appeared
that any automatic interpretation of an image was impossible (or at least very dif-
ficult) to perform if one does not apply some preliminary operations on the image.
These operations are transformations on the image which make it easier to handle,
or simplify it, in order to extract the most basic information more easily. The nature
of this information itself is not so easily defined and many researches have tried to
mimick the human vision for computational purpose. How vision does really work
is still a controversial subject and, except in the next paragraph, we shall not enter
into such considerations, but try to remain as practical as possible.

Let us examine a bit closer what an image analysis algorithm should intuitively do.
The input of such an algorithm is an image taken by a camera. The output is some in-
terpretation yielding an automatic decision. A commonly accepted method to attain
this objective is to detect the objects that are present in the scene and to determine
their position and possibly their movement. We could further try to determine the
nature of these objects. Before the foundation of the Gestalt School in 1923 [168], it
was believed that we detected objects because of the experience we had of them. On
the contrary, Gestaltists proved by some psychophysical experimentations that with-
out a priori semantic knowledge, shapes were conspicuous as the result of the collab-
oration or inhibition of some geometrical laws [99, 98]. Even though the Gestalt laws
are rather simple (and were nearly set in mathematical terms by the Gestaltists), their
formulation in a computational language is more complex, because they are nonlocal
and hierarchically organized. A plan for the computational detection of perceptual
information was initiated by Attneave [15], then Lowe [114] and more recently by
Desolneux, Moisan and Morel [50]. In fact, most of widely used theories, as edge de-
tection or image segmentation, without strictly following a Gestaltist program, take
some part of it into account, since they assume that shapes are homogeneous regions
separated from one another and the background by smooth and contrasted bound-
aries [26, 118, 133, 100], which is in agreement with some grouping Gestalt laws.
These theories are often variational and can be formulated with elegant mathematical
arguments. (We also refer to a recent book by Aubert and Kornprobst [16] exposing
the mathematical substance of these theories.) Very recently, Desolneux, Moisan and
Morel [49] developed a new algorithm for shape detection following the Gestalt prin-
ciples. The advantage of this method is that the edges they found are level lines of
images, and consequently, Jordan curves, which are the objects we shall deal with in
the following.

We assume (and believe!) that this detection program is realistic but we do not cope
with it. On the other hand, this does not mean that we should consider that the prob-
lem of shape extraction has been completely elucidated! Nevertheless, as the topic
of these lectures follows shape detection, we are obliged to take it for granted.
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1.1 Shape recognition

Determining automatically the nature of a detected object (is it a man? a vehicle?
what kind of vehicle? etc...) is achieved by placing it in some pre-established clas-
sification which is the preliminary knowledge. Algorithms use some more or less
large databases allowing to precise the classification and try to compare the detected
shapes with known ones. Shape recognition is this classification.

Otherwise said, we have a collection of model patterns and we want to know which
one the detected shape matches best. A more simple subproblem is to decide whether
the observed shape matches a given model. This raises at least two questions:

1. what kind of representation do we take for a shape? (or what is our model of

shape?)
2. what kind of properties a shape recognition algorithm should satisfy?

In what follows, we only consider two-dimensional images. The answer to the first
question shall be simple: a shape will be a subset of the plane. If the set is regular, it
shall be useful to represent it by its boundary. If the set is bounded, its boundary is a
closed curve. By the Theorem of Alexandrov 2.4, it is equivalent to know the set or
its boundary.

In order to answer the second question, let us follow David Marr in Vision [117].

“Object recognition demands a stable shape description that depends little,
if at all, on the view point. This, in turn, means that the pieces and articula-
tion of a shape need to be described not relative to the viewer but relative to
a frame of reference based on the shape itself. This has the fascinating im-
plication that a canonical coordinate frame must be set up within the object
before its shape is described, and there seems to be no way of avoiding this.”

A “‘canonical coordinate frame” is
“a coordinate frame uniquely determined by the shape itself.”

The description must be stable in the sense that it must be insensitive to noise. For
instance, consider the shape given by the curve on Fig. 1.2(a). This curve has been
obtained by scanning a hand and then by thresholding the grey level to a suitable
value. One has no difficulty to recognize this shape immediately. However, in a com-
putational point of view, this shape is very complicated. A quantitative measure of
this complexity is that the curve has about 2000 inflexion points, most of which
having no perceptual meaning! Let us now consider the shape on Fig. 1.2(b). This
shape has been obtained from the original one by smoothing it with an algorithm
described in the following of these lectures. The tiny oscillations have disappeared,
and the curve has only 12 inflexion points. In itself, this number has no absolute sig-
nificance. However, this shape is intuitively better in a computational point of view
for three reasons:

1. itis very close to the first one.
2. it is smoother.
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3. Fig. 1.2(b) is a good sketch of a hand in the sense that it cannot be much sim-
plified without changing the interpretation. As a parallel, Attneave [15] showed
a sketch of a cat containing only a few (carefully chosen) lines, which were
sufficient to guess what the drawing was. This means that, up to some point, a
shape can be considerably simplified without altering our recognition. In a sense,
Fig. 1.2(b) is closer than Fig. 1.2(a) to the minimal description of a hand.

(a) Original shape (b) Smoothed shape

Fig. 1.2. The representation of shape for recognition must be as simple and stable as possible.
Both shapes represent the same object at different level of details. For a recognition task, most
of details on Fig. 1.2(a) are spurious. The shape on Fig. 1.2(b) is intuitively much simpler and
visually contains the same information as the noisy one

What about the “canonical coordinate frame”? Mathematicians will call such a frame
intrinsic. It is not very complicated to imagine such a frame. For instance, the origin
may be taken as the center of mass of the shape. Then, the principal directions given
by the second order moments provide some intrinsic directions. Those have the nice
additional properties to be invariant with respect to rotations. However, if we think
of a circle, this intrinsic frame is not uniquely defined. This does not matter since
each frame gives the same description, but if we now think of a noisy circle, then the
orientation of the frame vector may dramatically change, contradicting the stability
hypothesis.
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1.1.1 Axioms for shape recognition...

Marr did not give precise any practical algorithms for shape representation and
recognition but, in a sense, he initiated an axiomatic approach, that has been pro-
longed by many people. (A recent review with axiomatic arguments is presented by
Veltkamp and Hagedoorn [164] for the shape matching problem.) Most people agree
that the matching problem is equivalent to finding distances between shapes. (See for
example the works of Trouvé and Younes [159, 170].)

Intrinsic distance

First, the distance between objects should be independent on the way we describe
them. If an object is a set of pixels, it seems clear that a distance taking an arbitrary
order of the points into account is not suitable. In the same way, for curves matching,
the parameterization should not influence the matching, which should only depend
on the geometry of the curves.

Invariance

Another property shall also be a cornerstone of our theory: invariance. Marr under-
stood that the recognition should not depend on the particular position of the viewer.
The mathematical formulation of invariance is a well known technique, giving ex-
tremely important results in many fields such as theoretical physics or mechanics.
We consider a set of transformations (homeomorphisms), which has in general a
group structure. This group models the set of modifications of the shape when the
viewer moves. In a three dimensional world, images are obtained by a projection and
such a group does not exist: we cannot retrieve hidden parts of objects by simply
deforming the image taken by the camera. However, for “far enough” objects and
“small displacements”, projective transformations are a good model to describe the
modification of the silhouette of the objects since they correspond to the change of
vanishing points in a perspective view. If we add some additional hypotheses on the
position of the viewer, we can even consider a subgroup of the projective group. If
G is the admissible group of deformations, and d a pseudo-distance between shapes,
the invariance property can be formulated by

Vge G, d(gA,B) = f(g)d(A, B), (1.2)

where g A represents the shape A deformed by g and f : G — R does not depend on
A and B. Notice that d is only a pseudo-distance since d(gA, A) = f(g)d(A, A) =
0. In a mathematical point of view, it is natural to define shape modulo a transforma-
tion, which is equivalent to define a distance between the orbits of the shape under the
group action. In such a way, a true distance is retrieved instead of a pseudo-distance.
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Stability

The stability may be thought as noise insensitivity. In [164], it is formulated by a set
of four properties. The first one is strongly related to invariance, and we do not go
further. The last three may be interpreted as follows: we modify a shape by some
process and we compute the distance between the original shape and the new one.
Then, it should be small in the following cases:

1. blurring: we add some parts, possibly important, but close to the shape.
2. occlusion: we hide a small part of a shape (possibly changing its topology).
3. noise addition: we add small parts possibly far from the shape.

Simplicity

This last property is not an axiom properly speaking, since it is not related to the
recognition itself. However, we believe that an algorithm will be all the more efficient
and fast, if it manipulates a small amount of data. Intuitively, it is certainly easier to
describe the curve of Fig. 1.2(b) than the one of Fig. 1.2(a). For instance, we could
think of keeping a sketch of the curve linking the points with maximal curvature. On
the noisy curve, nearly all the points are maxima of curvature and the sketch is as
complex as the original curve.

1.1.2 ... and their consequences

What can be deduced from the heuristic above? First, in order to get insensitivity to
noise, it seems natural to smooth the shapes. Naturally, we then face the problem:
what kind of oscillation can be labelled as noise, or contains real information? There
is no absolute answer to this question but it shall only depend of a single parameter
called scale representing the typical size of what will be considered as noise, or the
distance at which we observe the shape. Since we cannot choose this scale a priori,
smoothing will be multiscale and shape recognition will have a sense at each scale.
Since the recognition must resist to occlusion, it should, at least partially, rely on
local features. This is another argument for smoothing since local features are sensi-
tive to noise. For instance, commonly used are the inflexion points and the maxima
of curvature. Since they are defined from second derivatives, this is clear that a noisy
curve as in Fig. 1.2(a) is totally unreliable.

1.2 Curve smoothing

We now admit the principle that shape recognition is made possible by a multi-
scale smoothing process removing the noise at each scale. It seems, that by adding
this step, we have complicated the problem. Indeed. We do not know what kind of
smoothing we have to choose, the only objective we have is to make local features
reliable. It is also obvious that the smoothing has to be compatible with all the as-
sumptions we made on the recognition task (invariance, stability, simplicity). The



