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Pretace

We are happy to present the first volumes of the Handbook of Logic in
Computer Science. Logic is now widely recognized to be one of the foun-
dational disciplines of computing and has found applications in virtually
all aspects of the subject, from software engineering and hardware to pro-
gramming language and artificial intelligence. There is a growing need for
an in-depth survey of the application of logic in computer science and Al.
The Handbook of Logic in Computer Science and its companion, the Hand-
book of Logic in Artificial Intelligence and Logic Programming have been
created in response to this need.

We see the creation of the Handbook as a combination of authoritative
exposition, comprehensive survey, and fundamental research exploring the
underlying unifying themes in the various areas. The intended audience is
graduate students and researchers in the areas of computing and logic, as
well as other people interested in the subject. We assume as background
some mathematical sophistication. Much of the material will also be of
interest to logicians and mathematicians.

The tables of contents of the volumes were finalized after extensive
discussions between handbook authors and second readers. The first two
volumes present the background logic and mathematics extensively used in
computer science. The point of view is application oriented. The other four
volumes present major areas in which the methods are used. These include
Volume 3 — Semantic Structures; Volume 4 — Semantic Modelling; Vol-
ume 5 — Specification and Verification; and Volume 6 — Logical Methods.

The chapters, which in many cases are of monographic length and scope,
are written with emphasis on possible unifying themes. The chapters have
an overview, introduction, and a main body. A final part is dedicated to
more specialized topics.

Chapters are written by internationally renowned researchers in the
respective areas. The chapters are co-ordinated and their contents were
discussed in joint meetings.

Each chapter has been written using the following procedures:

1. A very detailed table of contents was discussed and co-ordinated at
several meetings between authors and editors of related chapters. The
discussion was in the form of a series of lectures by the authors to
everyone present. Once an agreement was reached on the detailed
table of contents the authors wrote a draft and sent it to the editors
and to other related authors. For each chapter there is a second reader
(the first reader is the author) whose job it has been to scrutinize the



vi Preface

chapter together with the editors. The second reader’s role is very
important and has required effort and serious involvement with the

authors.
Second readers for this volume are:

Chapter 1: Valuation Systems and Consequence Relations — M.
Fourman

Chapter 2: Recursion Theory — M. Hennessy and J. Tucker

Chapter 3: Universal Algebra — A. Poigne and M. Fourman

Chapter 4: Category Theory — E. Wagner and M. Fourman

Chapter 5: Topology — H. Barendregt

Chapter 6: Model Theory — 1. Hodkinson and D. Gabbay.

2. Once this process was completed (i.e. drafts seen and read by a large
enough group of authors), there were other meetings on several chap-
ters in which authors lectured on their chapters and faced the criti-
cism of the editors and audience. The final drafts were prepared after
these meetings.

3. We attached great importance to group effort and co-ordination in the
writing of chapters. The first two parts of each chapter, namely the
Introduction—Overview and Main Body, are not completely under the
discretion of the author, as he/she had to face the general criticism
of all the other authors. Only the third part of the chapter is entirely
for the authors’ own tastes and preferences.

The Handbook meetings were generously financed by OUP, by SERC
contract SO/809/86, by the Department of Computing at Imperial College,
and by several anonymous private donations.

We would like to thank our colleagues, authors, second readers, and
students for their effort and professionalism in producing the manuscripts
for the Handbook. We would particularly like to thank the staff of OUP for
their continued and enthusiastic support, and Mrs Jane Spurr, our OUP
Administrator for her dedication and efficiency.

London The Editors
June 1992
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2 Mark Ryan and Martin Sadler
1 Introduction

This chapter is an introduction to some of the basic concepts and machin-
ery of logic, concentrating on the contemporary uses of logic in computer
science. It is not comprehensive, since many topics (such as equational
reasoning, algebras, categories and computability) are introduced in other
chapters. In particular, we concentrate on the applications of logics as
reasoning systems about computing rather than on the foundational as-
pects of computer science which logic addresses. This is not a standard
introduction to classical first order logic and its model theory, such treat-
ments being widely available elsewhere [Hamilton, 1978; Hodges, 1983;
Makowsky, ]. Rather, we attempt to bring together some topics from the
logics currently used for reasoning about programs and about computer
systems, and see them within a unifying framework at an appropriate level
of abstraction.

Prerequisites. Most of the constructions in this chapter are based on
‘naive set theory’, whose use we take for granted. We also assume some
exposure to the use and manipulation of the usual propositional operators
(A, =, V, 1), and to predicates. Some familiarity with discrete mathemat-
ics, including the use of A-notation, and the idea of proofs both within and
about a formal system would be helpful.

1.1 Logics and computer science

It has been recognized for a long time that there is an intimate connection
between logic and computer science:

‘It is reasonable to hope that the relationship between compu-
tation and mathematical logic will be as fruitful in the next
century as that between analysis and physics in the last. The
development of this relationship demands a concern for both
applications and mathematical elegance.” (J. McCarthy, 1965)

We begin this chapter by describing some aspects of the interconnec-
tions between logic and computer science. We will introduce the machinery
of logic later, here we rely on the reader’s intuitions about truth, proofs and
propositions.

First we can distinguish between a ‘foundational’ aspect and a ‘reason-
ing system’ aspect of the connection. At the foundational aspect, logic is
used to provide a model of the phenomenon of computation. For example:
the Curry-Howard isomorphism is a description of the parallel between
computation and proof transformation in intuitionistic logic. An idealized
view of computation is adopted: it is taken to mean reducing typed lambda
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terms to normal form. We can justify this idealization by appealing to the
formal power of the typed A-calculus and of Turing machines; see for ex-
ample [Barendregt, ] and [Phillips, | in this volume.

The key idea is the identification of propositions with types, and proofs
with terms. A proposition is a type whose terms are the proofs of the propo-
sition. This programme is called intuitionistic type theory, and started with
P. Martin-Lof [Martin-Loéf, 1975]. Reducing lambda terms to normal form
(which is our model of computation) is the same as eliminating redundant
steps in proofs. We return to this topic briefly later on.

Girard’s Linear logic is a further step in this foundational direction. It
abandons certain structural properties present in both classical and intu-
itionistic logic and by doing so provides a new approach to many issues
in functional programming, such as lazy evaluation, side-effects, memory
allocation and parallelism.

This is not, however, the level of interconnections between logic and
computer science with which we are primarily concerned in this chapter;
the interested reader should see other chapters in this Handbook. Instead,
we concentrate on logics as reasoning systems—on their claim to be systems
for making deductions from premises. Logic is used for describing and
implementing systems which reason about a particular domain (e.g. in
specification theory and artificial intelligence). Temporal logic is used to
reason about domains in which time plays a key role, deontic logic for
domains involving normative behaviour, default logic when only partial
information is available, and so on. Specification theory provides many
examples of this relationship between logic and computer science. The
expressions in specification languages usually denote logical theories, often
based on multi-modal logics (see [Stirling, | in this volume). Multi-modal
logics have also been used to reason about concurrent systems and non-
deterministic systems.

Already in this chapter we have referred to several different ‘logics’
intuitionistic logic, temporal logic, linear logic, deontic logic and others.
There 1s a recurrent debate between absolutism and pluralism, whether
there is ‘one true logic’ for reasoning about all domains or whether different
logics should be studied for different domains. We attempt in this chapter
to argue that computer science demands a pluralist view.

It is often stated that classical logic (the logic which is usually taken to
be the ‘one true logic’ by absolutists) is capable of expressing arguments
phrased in any ‘non-standard’ logic, and so removes the need for studying
them. Indeed, we shall see in the last section that many logics can be
embedded in classical logic in a precise sense. But to argue along these
lines misses an important point. As V. Pratt says,

“T'here is a tradition in logic, carried over into computer science,
to think of pure first order logic as a universal language. In fact



