i — S g = —
]
==, i - e i =_N - i
. g ! - 4]
£ v i - o
N | - F K 1 L -
oy

by
F
L]
1
L
.l,|
T
i

-
| |
IFI"
!.I l.l
[
¥
C
whon
i1
3
|
]

o
= ! A "I.._ = -
r » i X :
. " o = = e
- [P - R - . —_ -, e
'_‘__. v 1 1:_. I|_ i i &l Ir_l- =
| -
! ¥ b
4 - _;.' - T . =
—— e i i e Bl -
| |
- 1 i fd)
B e 3 2 4 e = in = 118
: n F b B | ‘
i = o My T B =il (R] . L. = el L

) XFORD SCIENCE PUBLICATIONS

V7o Lan A N : Ve
Rt USRS M
O S S e R I e D) e
. = | f [=1 0 b
T b e AT e
I-.. w #‘E

=
| N W e

| . ¥ r&]*r r__ -
[

iy a1l ST S

Bt e ion

i
% 11Tr ;

3 l;.;)

=
i |
1
"o

)
S
ks

- e |-) i . at
ol L {1 As, t'l 7 =
L i B |
s "-"'T’." WL o I:I-'.- ..'|"l. ._1' " *
-r. " _|‘ '|I P

.'-|' pie "
-.'J-.i_
W s |

|
A i
il R N
AP
&
4

sk Tk

%

£

1.}

.111__'_

.

' ¥ 5
w i
Ul
|Ii

| !

b

4

-r'llL
> “:'I'I- L
=

{
L

RO
&

ok oLk
S R
N
r-:.\-f
1

W

h

'.

xs
S

= BN

. &

J'I:
ri—'b*:

Li-'

=l
b

. -y
L0
Lk A
r'n.l".."J:-' L i-

5

§
e

T
L L
Y

|

"
e
g -_. '-: '.-:..

.-'.':;4- i
- =

e

s R '.-": 1o

5

i ‘ _
L ey Ly Tz i e ' - A= ¢ el e W0 e Sl
i:r_;.l,;;:}f,'";i:f-ln'd;'ﬁ; e S e i i 3 f-w‘*gf-,;r'?‘*'
19+ L § Ao twl " - - : 1 ; _ ’ ! = = A N a B =y

;"‘:c:”r_":'fﬁ:';ﬂfi ' d : Ak § Ll ulgt e : o L '.;_qt' s . TN Ll _"; o .:!';:.'.' i

..".ll." ::;1.;‘.._.1'_{. . : : : §| e - ,.1‘ 'r'-+.‘_h_' . ») ' r' = i . .- b (™ ,_1 ot iy
o o S e T (L Rt el e 1 o 2 WA oy i : 5
-1:.'--‘11;%',;".3,;“‘*-:‘45 : e o
'*’.1:"1'..-"\;: L e e 5 '-F*‘r',l_-.-i'!‘#":'-"'l“‘d]
";;h:.:h;l%'ﬁ:;g‘. ol t ||-_- 0 _:-:‘?r - L:-ﬁ,l"'_:ﬁ;'l' o m J__|'-‘__
,"‘ -l:; . ,.'. | .—':':: ""1 'H: " a: .y

lr.ﬂ}i.',“i}']f; ,‘_‘ 1 f’!‘}‘l r.‘ m A : :,*l - :' ¥ - .lﬂl_" .:I,. .

] i e

Ly
¥.

L PR

O i
I.r. IJ T L

= e |ty it | s 0

[J: . '} " = '-J'I&‘ i',

ey [I :r"_.-.1‘.1 . N

T - ;afﬂ.:% :ij:l .:.':‘:'.l..i:} A,]_1

T S A e S LR
- S wie i | 1 1 AT p

i

3t

sl et ¥ \-: St

et S LT R LTI 5 ot p L 'ﬁ% oL

gyl A T okl .;Eﬁn'“
Y -

L . -.- »
. F'TI*EL i

A e S et o}

N F]
J_ J'rr_- ":1"- L
Rl
S Y
& -I = 2 l .

I St o
'I'"| T = " 'r & HP."_I -..
el T L s : |
7. _::'_::__. =¥ s

Handbook of Logic
in Computer Science

Volume 1
Background: Mathematical Structures

Edited by
S. ABRAMSKY

Professor of Computing Science

DOV M. GABBAY

Professor of Computing Science
and

T.S. E. MAIBAUM

Professor of Foundations of
Software Engineering

Imperial College of Science, Technology and Medicine
London

Volume Co-ordinator

DOV M. GABBAY

CLARENDON PRESS - OXFORD
1992

Oxjord University Press, Walion Street, Oxjord OX2 6DP

Oxford New York Toronto
Delhi Bombay Calcutta Madras Karachi
Kuala Lumpur Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland Madrid

and associated companies in
Berlin Ihadan

Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press Inc., New York

© Chapter authors, 1992

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
fair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or

in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction cutside those terms and in other countries should be sent to

the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not,
by way of trade or otherwise, be lent, re-sold, hired out, or otherwise
circulated without the publisher's prior consent in any form of binding
or cover other than that in which it is published and without a similar
condition including this condition being imposed
on the subsequent purchaser.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
(Data available on request)

ISBN 0-19-853735-2

Printed in Great Britain by
Biddles Lid,
Guildford and King's Lynn

HANDBOOK OF LOGIC
IN COMPUTER SCIENCE

Editors
S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum

HANDBOOKS OF LOGIC IN COMPUTER SCIENCE

and

ARTIFICIAL INTELLIGENCE AND LOGIC PROGRAMMING

Executive Editor
Dov M. Gabbay

Administrator
Jane Spurr

Volume 1
Volume 2
Yolume 3
Yolume 4
Yolume 5
Yolume 6

Volume 1
Yolume 2
Yolume 3
Volume 4
Volume 5

Handbook of Logic in Computer Science

Background: Mathematical structures
Background: Computational structures

Semantic structures

Semantic modelling

Theoretical methods in specification and verification
Logical methods in computer science

Handbook of Logic in Artificial Intelligence and
Logic Programming

Logical foundations

Deduction methodologies

Nonmonotonic reasoning and uncertain reasoning
Epistemic and temporal reasoning

Logic programming

Pretace

We are happy to present the first volumes of the Handbook of Logic in
Computer Science. Logic is now widely recognized to be one of the foun-
dational disciplines of computing and has found applications in virtually
all aspects of the subject, from software engineering and hardware to pro-
gramming language and artificial intelligence. There is a growing need for
an in-depth survey of the application of logic in computer science and Al.
The Handbook of Logic in Computer Science and its companion, the Hand-
book of Logic in Artificial Intelligence and Logic Programming have been
created in response to this need.

We see the creation of the Handbook as a combination of authoritative
exposition, comprehensive survey, and fundamental research exploring the
underlying unifying themes in the various areas. The intended audience is
graduate students and researchers in the areas of computing and logic, as
well as other people interested in the subject. We assume as background
some mathematical sophistication. Much of the material will also be of
interest to logicians and mathematicians.

The tables of contents of the volumes were finalized after extensive
discussions between handbook authors and second readers. The first two
volumes present the background logic and mathematics extensively used in
computer science. The point of view is application oriented. The other four
volumes present major areas in which the methods are used. These include
Volume 3 — Semantic Structures; Volume 4 — Semantic Modelling; Vol-
ume 5 — Specification and Verification; and Volume 6 — Logical Methods.

The chapters, which in many cases are of monographic length and scope,
are written with emphasis on possible unifying themes. The chapters have
an overview, introduction, and a main body. A final part is dedicated to
more specialized topics.

Chapters are written by internationally renowned researchers in the
respective areas. The chapters are co-ordinated and their contents were
discussed in joint meetings.

Each chapter has been written using the following procedures:

1. A very detailed table of contents was discussed and co-ordinated at
several meetings between authors and editors of related chapters. The
discussion was in the form of a series of lectures by the authors to
everyone present. Once an agreement was reached on the detailed
table of contents the authors wrote a draft and sent it to the editors
and to other related authors. For each chapter there is a second reader
(the first reader is the author) whose job it has been to scrutinize the

vi Preface

chapter together with the editors. The second reader’s role is very
important and has required effort and serious involvement with the

authors.
Second readers for this volume are:

Chapter 1: Valuation Systems and Consequence Relations — M.
Fourman

Chapter 2: Recursion Theory — M. Hennessy and J. Tucker

Chapter 3: Universal Algebra — A. Poigne and M. Fourman

Chapter 4: Category Theory — E. Wagner and M. Fourman

Chapter 5: Topology — H. Barendregt

Chapter 6: Model Theory — 1. Hodkinson and D. Gabbay.

2. Once this process was completed (i.e. drafts seen and read by a large
enough group of authors), there were other meetings on several chap-
ters in which authors lectured on their chapters and faced the criti-
cism of the editors and audience. The final drafts were prepared after
these meetings.

3. We attached great importance to group effort and co-ordination in the
writing of chapters. The first two parts of each chapter, namely the
Introduction—Overview and Main Body, are not completely under the
discretion of the author, as he/she had to face the general criticism
of all the other authors. Only the third part of the chapter is entirely
for the authors’ own tastes and preferences.

The Handbook meetings were generously financed by OUP, by SERC
contract SO/809/86, by the Department of Computing at Imperial College,
and by several anonymous private donations.

We would like to thank our colleagues, authors, second readers, and
students for their effort and professionalism in producing the manuscripts
for the Handbook. We would particularly like to thank the staff of OUP for
their continued and enthusiastic support, and Mrs Jane Spurr, our OUP
Administrator for her dedication and efficiency.

London The Editors
June 1992

Contents

Valuation systems and consequence

relations
1 Introduction
1.1 Logics and computer science
1.2 Summary
2 Valuation systems
2.1 Satisfaction
2.2 Valuation systems
2.3 Modal logic and possible worlds
2.4 Predicate languages
2.5 Summary
3 Consequence relations and entailment relations
3.1 Consequence relations
3.2 Entailment relations
3.3 The systems C' and S4
3.4 Levels of implication
3.5 Consequence operator
3.6 Summary
4 Proof theory and presentations
4.1 Hilbert presentations
4.2 Natural deduction presentations
4.3 Natural deduction in sequent style
4.4 Intuitionistic logic
4.5 Gentzen sequent calculus for [
4.6 Gentzen sequent calculus for C and S4
4.7 Properties of presentations
5 Some further topics
5.1 Valuation systems for [
5.2 Maps between logics
5.3 Correspondence theory
5.4 Consistency

Recursion theory

0

0.1
0.2

Introduction

Opening remarks
A taster

0.3 Contents of the chapter

i
80

80

81
84

viil

Contents

Languages and notions of computability

1.1 Data types and coding

1.2 The imperative paradigm

1.3 The functional paradigm

1.4 Recursive functions

1.5 Universality

Computability and non-computability

2.1 Non-computability

2.2 Computability

2.3 Recursive and recursively enumerable sets
2.4 The S-m—n theorem and partial evaluation
2.5 More undecidable problems

2.6 Problem reduction and r.e. completeness

Inductive definitions

3.1 Operators and fixed points

3.2 The denotational semantics of the functional
language F'L

3.3 Ordinals

3.4 The general case

Recursion theory

4.1 Fixed point theorems

4.2 Acceptable programming systems
4.3 Recursive operators

4.4 Inductive definitions and logics

Universal algebra

1

Introduction

1.1 What is universal algebra?

1.2 Universal algebra in mathematics and computer
science

1.3 Overview of the chapter

1.4 Historical notes

1.5 Acknowledgements

1.6 Prerequisites

Examples of algebras

2.1 Some basic algebras

2.2 Some simple constructions

2.3 Syntax and semantics of programs

2.4 Synchronous concurrent algorithms

2.5 Algebras and the modularisation of software

Algebras and morphisms
3.1 Signatures and algebras
3.2 Subalgebras

84

85

87

99
109
113
124
124
127
129
133
135
136
139
140

149
156
169
172
173
176
181
183

189

190
190

191
192
192
195
196

196
197
207
210
215
220
220
220
234

Contents

3.3 Congruences and quotient algebras

3.4 Homomorphisms and isomorphisms

3.5 Direct products

3.6 Abstract data types

Constructions

4.1 Subdirect products, residual and local properties
4.2 Direct and inverse limits

4.3 Reduced products and ultraproducts

4.4 Local and residual properties and approximation
4.5 Remarks on references

Classes of algebras

5.1 Free, initial and final algebras

5.2 Equational logic

5.3 Equational Horn logic

5.4 Specification of abstract data types
5.5 Remarks on references

Further reading

6.1 Universal algebra
6.2 Model theory

Basic category theory

1

Categories, functors and natural transformations

1.1 Types, composition and identities

1.2 Categories

1.3 Relating functional calculus and category theory
1.4 Compositionality is functorial

1.5 Natural transformations

On universal definitions: products, disjoint sums and

higher types

2.1 Product types

2.2 Coproducts

2.3 Higher types

2.4 Reasoning by universal arguments

2.5 Another ‘universal definition’: primitive recursion

2.6 The categorical abstract machine

Universal problems and universal solutions

3.1 On observation and abstraction

3.2 A more categorical point of view

3.3 Universal morphisms

3.4 Adjunction

3.5 On generation

3.6 More examples for separation and generation

1X

244
260
275
287

287
288
298
321
332
336

337
338
301
369
392
396

397
398
398

413

416
416
418
424
427
433

437
437
443
446
451
456
457
460
461
465
470
473
475
481

10
11

Contents

Elements and beyond

4.1 Variable elements, variable subsets and representable
functors

4.2 Yoneda's heritage

4.3 Towards an enriched category theory

Data structures

5.1 Subtypes

5.2 Limits

5.3 Colimits

Universal constructions

6.1 The adjoint functor theorem

6.2 Generation as partial evaluation

6.3 Left Kan extensions, tensors and coends

6.4 Separation by testing

6.5 On bimodules and density

Axiomatizing programming languages

7.1 Relating theories of A-calculus

7.2 Type equations and recursion

7.3 Solving recursive equations

Algebra categorically

8.1 Functorial semantics

8.2 Enriched functorial semantics

8.3 Monads

On the categorical interpretation of calculi

9.1 Category theory as proof theory

9.2 Substitution as predicate transformation

9.3 Theories of equality

9.4 Type theories

A sort of conclusion

Literature

11.1 Textbooks

11.2 References

Topology

1
2

(Observable properties

Examples of topological spaces

2.1 Sierpinski space

2.2 Scott Topology

2.3 Spaces of maximal elements. Cantor space
2.4 Alexandroff topology

2.5 Stone spaces

2.6 Spectral spaces

2.7 The reals

492

492
498
200

a1l
oll
016
526
039
036
041
245
251
293
209
299
266
074
978
o278
088
093
603
603
605
612
619
632

633
633
634

641
642

646
646
646
647
647
648
649
650

Contents

Alternative formulations of topology
3.1 Closed sets

3.2 Neighbourhoods

3.3 Examples

3.4 Closure operators

3.5 Convergence

Separation, continuity and sobriety
4.1 Separation conditions

4.2 Continuous functions

4.3 Predicate transformers and sobriety
4.4 Many-valued functions
Constructions: new spaces from old
5.1 Postscript: effectiveness and representation
Metric Spaces

6.1 Basic definitions

6.2 Examples

6.3 Completeness

6.4 Topology and metric

6.5 Constructions

6.6 A note on uniformities
Compactness

7.1 Compactness and finiteness

7.2 Spectral spaces

7.3 Positive and negative information: patch topology

7.4 Hyperspaces

7.5 Tychonoft’s theorem
7.6 Locally compact spaces
7.7 Function spaces

Appendix

Model theory and computer science:
An appetizer

1
2

Introduction

The set theoretic modelling of syntax and semantics

2.1 First order structures

2.2 The choice of the vocabulary
2.3 Logics

Model theory and computer science
3.1 Computer science

3.2 The birth of model theory

3.3 Definability questions

3.4 Preservation theorems

3.5 Disappointing ultraproducts

X1

653
653
654
690
656
660

663
663
665
668
675
681
690

698
699
702
706
713
719
724
727
727
730
733
736
738
739
744

791

763
764

766
767
768
769

770
770
771
772
773
774

x1i

9

Contents

3.6 Complete theories and elimination of quantifiers
3.7 Spectrum problems

3.8 Beyond first order logic

3.9 The hidden method

3.10 0-1 Laws

Preservation theorems

4.1 Horn formulas

Fast growing functions

5.1 Non-provability results in second order arithmetic

5.2 Non-provability in complexity theory

5.3 Model theory of fast growing functions

Elimination of quantifiers

6.1 Computer aided theorem proving in classical
mathematics

6.2 Tarski’s theorem

6.3 Elementary geometry

6.4 Other theories with elimination of quantifiers

Computable logics over finite structures
7.1 Computable logics

7.2 Computable quantifiers

7.3 Computable predicate transformers
7.4 L-Reducibility

7.5 Logics capturing complexity classes
Ehrenfeucht-Fraissé games

8.1 The games

8.2 Completeness of the game

8.3 Second order logic and its sublogics
8.4 More non-definability results

8.5 The games and pumping lemmas

Conclusions

Author index

Index

774
779
777
778
779
780
780
782
782
782
783
784

789
787
789
790

790
790
793
794
796
797
798
798
801
802
802
800

805

815

817

Valuation Systems and

Consequence Relations
Mark Ryan and Martin Sadler

Contents

1 Introduction. v v o e

1.1 Logics and computer science
1.2 Summary v e e e e e e e e e
2 Valuationsystems
2.1 Satisfaction
2.2 Valuationsystems
2.3 Modal logic and possible worlds
2.4 Predicate languages
2.5 Summary
3 Consequence relations and entailment relations
3.1 Consequence relations
3.2 Entailment relations
33 Thesystems Cand S4
3.4 Levels of implication
3.5 Consequence operator
3.6 Summary e
4 Proof theory and presentations
4.1 Hilbert presentations
4.2 Natural deduction presentations
4.3 Natural deduction in sequent style
4.4 Intuitionistic logic
4.5 Gentzen sequent calculusfor I
4.6 Gentzen sequent calculus for C and S4
4.7 Properties of presentations
5 Some furthertopics.
5.1 Valuationsystemsfor I
0.2 Maps between logics
5.3 Correspondence theory
5.4 Comnsistency v i e e e

lllll

2 Mark Ryan and Martin Sadler
1 Introduction

This chapter is an introduction to some of the basic concepts and machin-
ery of logic, concentrating on the contemporary uses of logic in computer
science. It is not comprehensive, since many topics (such as equational
reasoning, algebras, categories and computability) are introduced in other
chapters. In particular, we concentrate on the applications of logics as
reasoning systems about computing rather than on the foundational as-
pects of computer science which logic addresses. This is not a standard
introduction to classical first order logic and its model theory, such treat-
ments being widely available elsewhere [Hamilton, 1978; Hodges, 1983;
Makowsky,]. Rather, we attempt to bring together some topics from the
logics currently used for reasoning about programs and about computer
systems, and see them within a unifying framework at an appropriate level
of abstraction.

Prerequisites. Most of the constructions in this chapter are based on
‘naive set theory’, whose use we take for granted. We also assume some
exposure to the use and manipulation of the usual propositional operators
(A, =, V, 1), and to predicates. Some familiarity with discrete mathemat-
ics, including the use of A-notation, and the idea of proofs both within and
about a formal system would be helpful.

1.1 Logics and computer science

It has been recognized for a long time that there is an intimate connection
between logic and computer science:

‘It is reasonable to hope that the relationship between compu-
tation and mathematical logic will be as fruitful in the next
century as that between analysis and physics in the last. The
development of this relationship demands a concern for both
applications and mathematical elegance.” (J. McCarthy, 1965)

We begin this chapter by describing some aspects of the interconnec-
tions between logic and computer science. We will introduce the machinery
of logic later, here we rely on the reader’s intuitions about truth, proofs and
propositions.

First we can distinguish between a ‘foundational’ aspect and a ‘reason-
ing system’ aspect of the connection. At the foundational aspect, logic is
used to provide a model of the phenomenon of computation. For example:
the Curry-Howard isomorphism is a description of the parallel between
computation and proof transformation in intuitionistic logic. An idealized
view of computation is adopted: it is taken to mean reducing typed lambda

Valuation Systems and Consequence Relations 3

terms to normal form. We can justify this idealization by appealing to the
formal power of the typed A-calculus and of Turing machines; see for ex-
ample [Barendregt,] and [Phillips, | in this volume.

The key idea is the identification of propositions with types, and proofs
with terms. A proposition is a type whose terms are the proofs of the propo-
sition. This programme is called intuitionistic type theory, and started with
P. Martin-Lof [Martin-Loéf, 1975]. Reducing lambda terms to normal form
(which is our model of computation) is the same as eliminating redundant
steps in proofs. We return to this topic briefly later on.

Girard’s Linear logic is a further step in this foundational direction. It
abandons certain structural properties present in both classical and intu-
itionistic logic and by doing so provides a new approach to many issues
in functional programming, such as lazy evaluation, side-effects, memory
allocation and parallelism.

This is not, however, the level of interconnections between logic and
computer science with which we are primarily concerned in this chapter;
the interested reader should see other chapters in this Handbook. Instead,
we concentrate on logics as reasoning systems—on their claim to be systems
for making deductions from premises. Logic is used for describing and
implementing systems which reason about a particular domain (e.g. in
specification theory and artificial intelligence). Temporal logic is used to
reason about domains in which time plays a key role, deontic logic for
domains involving normative behaviour, default logic when only partial
information is available, and so on. Specification theory provides many
examples of this relationship between logic and computer science. The
expressions in specification languages usually denote logical theories, often
based on multi-modal logics (see [Stirling, | in this volume). Multi-modal
logics have also been used to reason about concurrent systems and non-
deterministic systems.

Already in this chapter we have referred to several different ‘logics’
intuitionistic logic, temporal logic, linear logic, deontic logic and others.
There 1s a recurrent debate between absolutism and pluralism, whether
there is ‘one true logic’ for reasoning about all domains or whether different
logics should be studied for different domains. We attempt in this chapter
to argue that computer science demands a pluralist view.

It is often stated that classical logic (the logic which is usually taken to
be the ‘one true logic’ by absolutists) is capable of expressing arguments
phrased in any ‘non-standard’ logic, and so removes the need for studying
them. Indeed, we shall see in the last section that many logics can be
embedded in classical logic in a precise sense. But to argue along these
lines misses an important point. As V. Pratt says,

“T'here is a tradition in logic, carried over into computer science,
to think of pure first order logic as a universal language. In fact

