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PREFACE

Consider the following four theorems of pure mathematics.

The Hahn-Banach Theorem of Analysis? If F is a bounded linear functional
defined on a subspace M of a Banach space B, there is an extension of F to a linear

functional G on B such that WG ={F\.

The Nielsen—Schreier Theorem of Group Theory: If G is a free group and H

is a subgroup of G, then H is a free group.

The Tychonoff Product Theorem of Gemeral Topology: The product of any

family of compact topological spaces is compact.

The Zermelo Well-Ordering Theorem of Set Theory: Every set can be well-

ordered.

The above theorems have +two things in common. Firstly they are all

fundamental results in contemporary mathematics. Secondly, none of them can be proved

without the aid of some powerful set theoretical assumption: in this case the Axiom

of Choice.

Now, there is nothing wrong about assuming the Axiom of Choice. But let us be
sure about one thing: we are making an assumption here. Ve are saying, in effect,.
that when we speak of "set theory", the Axiom of Choice is one of the basic properties
of sets which we intend to use. This is a perfectly reasonable assumption to make,
as most pure mathematicians would agree. Moreover (and here we are at a distinct
advantage over those whﬁ first advocated the use of the Axiom of Choice), we lmow
for sure that assuming the Axiom of Choice does not lead to a contradiction with our

other (more fundamental) assumptions about sets.

In Chapter I of this book we describe four classic open problems of mathem-

atics, as above one from Analysis, one from Algebra, one from General Topology, and
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one from Set Theory. Since we call these "problems" rather than "theorems", however,
it should be obvious that they are not quite the same as our four statements above.
Indeed, it can be shown that assuming the axiom of choice does not lead to a solution
of any of these problems. But by making a further assumption about sets, we are able
to solve each of these problems (and many more problems known to be unsolvable

without such an assumption). This assumption is the Axiom of Constructibility.

The Axiom of Constructibility is an axiom of set theory. It is a natural
axiom, closely bound up with what we mean by "set". It implies the axiom of choice.
It is lmown not to contradict the more basic assumptions about sets. And as we have
already indicated, its assumption leads to the solution of many problems'known to be
unsolvable from the Axiom of Choice alone. Time alone will tell whether or not this
axiom is eventually accepted as a basic assumption in mathematics. Currently, the
situation is not unlike that involving the Axiom of Choice some sixty years ago.
The axiom is being applied more and more, and what is more it tends to decide
problems in the "correct" direction. And one can provide persuasive arguments which
justify the adoption of the axiom. (Again as with the Axiom of Choice in the past,
there are also arguments against its adoption.) However, since the axiom is being
applied in different areas of pure mathematics, it is a proposition of interest to

the mathematician at large regardless of the final outcome concerning its "validity".

Until recently the notion of a constructible set was studied extensively
only by the mathematical logician. Indeed, any kind of in-depth study requires a
considerable acquaintance with the ideas and methods of mathematical logic — in
particular, the notions of formal languages, satisfaction, model theory, and a good
deal of pure set theory. But with the growing use of the Axiom of Constructibility
in areas outside of set theory, the axiom has become of interest to mathematicians
who do not possess all of these prerequisites from logic. It is for this audience
that we have written this short account. (ur basic premise in writing has been that,
whilst it would be very nice if everyone had at least a basic knowledge of elementary

mathematical logic, this is almost certainly not the case. We therefore assume no
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prior lmowledge of mathematical logic. (The one exception is Chapter V, but the book
is designed so that this chapter‘can be totally ignored without affecting anything
else.) Since it would clearly be far too great a task to develop this material to a
level adequate for anything approaching a comprehensive treatment of comstructibility,
we choose instead to cut some corners and arrive at the required definitions very
quickly, In other words, we present here a description of set theory and the Axiom

of Constructibility, not the theory itself. Admittedly this approach may prove
annoying to logicians — but they do not need to read this account, being well

equipped to consult a more mathematical account.

The book is divided up as follows. In Chapter 1 we discuss some well known
problems of pure mathematics. Since each of these problems is unsolvable on the basis
of the current system of set theory, but can be solved if one assumes the Axiom of
Constructibility, they provide both a motivation for considering the axiom, as well
as illustrations of its application. In Chapter II we give a brief account of set
theory. This forms the basis of our description of constructibility in Chapter III.
Chapter IV applies the Axiom of Constructibility in order to solve the problems
congidered in Chapter I, Chapter V is different from the rest of this book in that
some knowledge of logic is assumed (At least, for a full appreciation of our discuss-
ion a prior kmowledge of logic is required. The reader may be able to gain some idea
of what is going on without such knowledge. We certainly try to keep things as simple
as possible.) In Chapter V we try to explain just how it is that the Axiom of
Constructibility enables one to answer questions of mathematics of the kind considered
in the previous chapters. In order to illustrate our description we present a further
application of the axiom, this time in Measure Theory. (We thereby provide some
consolation for measure theorists who may have felt left out by our choice of problems
in Chapter I.) The book is structured on the assumption that many readers will not

wish to go into the subject matter of Chapter V very thoroughly, if at all.

It is to be hoped that mathematicians may wish to use the .\xiom of Construct-

ibility. For this reason the proofs in Chapter IV are given in some detail, except
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that in each case we state without proof a very general combinatorial prineiple which
is a consequence of the Axiom of Comstructibility, and then use this principle in
order to prove the desired result. The advantage of this approach is that the reader
may use the proof as a model for other proofs, without having to spend a great deal

of time investigating the Axiom of Constructibility itself.

Finally a word about our use of the phrase "pure mathematics". In writing
this book it has been convenient to restrict the meaning of this phrase to "pure
mathematics other ti:an set theory". A similar remark applies to our use of the word

"mathematician" in our title.
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Chapter I FOUR FAMOUS PROBLEMS

In order both to motivate the consideration of the Axiom of Constructibility,
and to illustrate its use, we give here a brief account of four well known problems
of pure mathematics, one from analysis, one from algebra, one from general topology,
and one from set theory. These problems all have one thing in common: they cannot be
solved on the basis of the usual set theoretical assumptions (axioms), but they are

solvable if we assume the Axiom of Comstructibility.

1, A Problem in Deal Analysisil

Let X be an infinite set, < a linear ordering of X. We may define a topology
on X by taking as an open basis all intervals (ayb) ={xeXla<x<b } for a,beX
with a<b. A classic theorem of Cantor says that if X has no largest member and no
smallest member, and if the above topology on X is both connected and separable, then
X is (considered as an ordered topological space) homeomorphic to the real line, R,
(considered as an ordered topological space). The basic idea behind the proof is to
take a countable dense subset of X (by separability), prove that this set is isomorphic
to the rationals, @, and then show that X mst be isomorphic to the Dedekind completion
of the dense subset, and hence isomorphic to R, the Dedekind completion of . Use is
made of the fact that the connectedness of X is equivalent to the two facts (a) that
for each pair a,b of elements of X with a<b there is a third element,c, of X with

a<c<b, and (b) that every subset of X which is bounded above/below in X has a least

upper bound/ greatest lower bound in X.

It is not unnatural to ask if the above characterisation of the real line is
the best possible. Can we, for instance, weaken any of the conditions on X (and <)
ai:d still obtain the conclusion that such an X will be isomorphic to R ? From this

standpoint, the following question is quite natural. Let us say that a linearly

1. Strictly speaking, this is not a problem of real analysis itself. But it is clearly
of interest to any real analyst. (We make no apology for any ambiguity in this last
sentence. )



ordered set X satisfies the countable chain condition (c.c.c.) if every collection of

pairwise disjoint open intervals is countable. (The reader should not worry about
where "chains" get into the act. There are good historical reasons for using the
word "chain" here, as well as some, not so overwhelming, mathematical reasons.)
Clearly, if X is separable, then X will satisfy the c.c.c. So it is not unreasonable

to pose the following question:

Let X be an infinite set, < a linear ordering of X. Suppose that under the
ordering <, X has no largest member and no smalliest member. Regard X as a topological
space as above. If X is connected and satisfies the c.c.c., does it follow that
XEZR ? '

This question was first raised by M. Souslin in 1920. It soon became known

as The Souslin Problem. Curiously enough, although the question is so basic and so

very simple to pose, it resisted numerous attempts at solution over the next forty
years. Of course (?), in view of the important role played by the fact that the
reals have a countable dense subset, one would expect the Souslin Problem to have
a negative answer. But no counterexample was forthcoming. We shall see why in the

ensuing chapters.

2. A Problem in Algebra

We consider now a famous problem of group theory. As a first step, let us

establish the convention that "group" will always mean 'abelian group'.

Let G, A, B be groups. We say that G is an extension of A by B iff A is a
subgroup of G (written A<4G) and G/A = B. (Thus B describes, in a sense, the

manner in which G extends A.)

Given groups G and A with G an extension of A, there is a unique (up to
isomorphism) group B such that G is an extension of A by B: namely the group G/A.

The extension problem (for abelian groups) asks the following converse question.

Given groups A and B, determine the extensions of A by B, There is always at least
one such: namely, the direct sum A ® B . But there may be more than one. For instance,
let Z be the group of integers, 27 the subgroup of the even integers, and 2 the unique
group of order 2. Mow, §/2§ = 2, so Z is an extension of 27 by 2. But Z F2Z @ 2

Iy

since Z is torsion free and 2Z @ 2 has torsion. The following solution to the

s &

extension problem is due to Baer.

Let G, G’ be extensions of A by B. Thus G/A £ B, G'/A = B. Let
U

628 and ¢-25mB



be the canonical projections. We write G ~ G’ iff there is an isomorphism
hd

¢ —4— G

which makes the following diagram commute:

B /
T

G—6

'%Aﬁzl

(As usual, 1 A denotes the identity morphism on A into whatever extension of A is

being considered.)

It is easily seen that ~ is an equivalence relation on the set of all
extensions of A by B, The relation G ~ G’ is stronger than isomorphism, and is

clearly the correct notion of "sameness" when we are considering extensions of A

by B.

R. Baer proved, in 1949, that the set of equivalence classes of extensions
of A by B under the above equivalence relation itself forms a group. e denote this
group by Ext(B,A). It is the group of extensions of A by B. It is outside the scope
of this book to describe the group operation involved in Ixt(B,A), and indeed we
shall not need to know it. What we do need to kmow is that the identity element of

the group Ext(B,A) is the equivalence class of the direct sum A ® B .

We should also mention that as a result of work by Schreier it is possible

to give a description of the members of Ext(B,A) in terms of A and B.

Let us recall now that a group G will be free iff there is a set {gilie I}
of elements of G such that every non-zero element of G has a unique representation
of the form

n.g.

i +°"+nkgik .

1

where il,...,ik are distinct members of I and nl’""tﬁs are non-zero integers.



We then say{gil ieI} is a basis for G. A basis is thus the same as a linearly
independent generating set. e relate the notion of a free group to the extension

problem as follows.
2.1 Theorem
Let H<G. If G/H is free, t.en G = H ® N for some N<G, N = G/H .

Proof: Let {M + k |keK} be a basis for G/H , where KcG. Let N = <K>G, the subgroup

of G generated by K. It is easily checked that G=TI @& N . o

2.2 Corollary
If B is free, then Fxt(B,A) = O.
Proof: Let A<G, G/A B, Since G/A is free, 2.1 gives G = A @ B . (More precisely,

the proof of 2.1 shows that G~A ® B in the sense defined above.) a

The above result has a converse. in order to obtain the converse, we recall

the following standard theorem.

2.3 Theorem (Nielsen-Schreier)

If G is free and I1<G, then II is free. o

2.4 lemma

Let B be a given group. If ixt(B,A) = O for all groups A, tiien B is free.

Froof: Let F be the free group on B (i.e. the unique group which is freely generated

by the set B). Let %
F —— B

extend the identity function on B. Set A = Ker(9). Then ¥ is an extension of A by B,
so by hypothesis, F = A @ B . Hence there is an embedding
B——F,

So by 2.3, B is free. o



Now , by 2.2, if G is free, then Ext(G,g) = 0, J. H, C. Whitehead asked, in

1951, if this statement has a valid converse. In other words, does the property that
Ext(G,g) = 0 characterise the free groups G ? Defining a W=—group to be any group G
for which .T'lxt(G,g) = 0, this reduces tn showing that every W-group is free. Until

recently, the only result of note on this problem was the following, proved in 1951:

2.5 Theorem (Stein)

livery countable V-group is free. QO

We shall return to the Whitehead Problem in later chapters.

3. A Problem in General Topology

Let (X,3) be a topological space. The following separation properties which

X may satisfy are well known.

X is T, if, whenever x,ye X and x # y there is an open set U which contains

0

exactly one of x, y.

X is T, if, whenever x,ye X and x # y there are open sets U, V such that

1
xeU, y¢U and x¢V, yeV.

X is T2 (Hausdorff) if, whenever x,y€X and x # y there are disjoint open
sets U, V such that x€U and ye V.

X is regular if, whenever x €X and A<X is closed and x4 A, there are disjoint

open sets U, V such that xeU and A<V, X is T, if it is regular and Tl'

3

X is normal if, whenever A, B are disjoint closed subsets of X there are

if it is normal and T..

disjoint open sets U, V such that ASU and BeV. X is TL1 1

It is immediate that T4—> T3—- T2—-’ Tl—-'TO. None of these implications is

reversible.

The following generalisation of the Hausdorff property occurs in the literat-—

ure. We say a subset Y of X is discrete if every point of X has a neighborhood which



contains at most one point of Y. (Thus if X is T1, a subset Y of X will be discrete
iff Y has no limit points in X, which says that the elements of Y are spaced well

apart from each other.) A space is collectionwise Hausdorff if, whenever Y is a

discrete set, there is a family {Uy\ ye€ Y} of pairwise disjoint open sets such that

ye Uy for all yeY. (Ve call such a family a separation of Y.)

Now, it is not hard to show that the Hausdorff property does not in general
imply the collectionwise Hausdorff property. Indeed, there are T4 spaces which are
not collectionwise Hausdorff. So we ask what extra conditions on a space are
required in order to yield the conclusion that it be collectionwise Hausdorff ?
Considerations outside of our present scope lead to the following precise question
(which is fairly close to the best possible). Recall that a space is said to

satisfy the first axiom of countability if for each point x the neighborhood system

of x has a countable basis. The question now is: 1s every first countable T& space
collectionwise Hausdorff? e investigate this problem in IV.4. Let us finish by
mentioning that this question first arose out of research on a very famous problem

of General Topology — the normal Moore space problem (which is still open). This

problem deals with the metrization problem (i.e. which topological spaces are metric

spaces ?). Roughly speaking, what the normal Moore space problem asks is whether

every first countable Tq space is collectionwise normal.

4, A Problem in Set Theory

The oldest of our four problems — the continuum problem — dates back to

Cantor. The question raised here is: low many real numbers are there ? In order to

make this precise we require some elementary notions from set theory.

Fundamental in mathematics is the notion of counting. And it is to be expected
that our reader is familiar with (at least some of!) the natural numbers 0y1y2500e
Using the natural numbers we may "count" the "number" of elements in any finite set.

But what about infinite sets ? Well, why not extend the natural number system into the



transfinite ? Why not indeed! By doing this we obtain the ordinal number system,
which commences with the natural numbers, and which is adequate to "count" the elements
of any set. What are the ordinal numbers ? We answer this question by first answering

the question: What are the natural numbers ?

The number O we define to be the empty set, fi. The number 1 we define to be
the set 10} (i.e. the set with precisely one element, that element being the natural
number 0). The number 2 we define to be the set 10,1} . Proceeding inductively, we
define the number n+1 to be the set {0,1, . . . ,nl. Notice that the number n is
always a set with exactly n elements, those elements being precisely the numbers
smaller than n. To obtain the ordinal numbers we continue the definition into the
transfinite. The first infinite ordinal, denoted by w, is the set

{0,1, ¢ o0 oMy o s 6 oo s o o o}
of all natural numbers. The second infinite ordinal, w+1, is the set
T0,Ly o o6 oMy s 0w ww = @« s egWFa
In general, the next ordinal number after o will be the set o U {a} . And when we
have defined the sequence of ordinals
Oply o o o gDy o o o sW041, o o o 40y o o o ’
this sequence having no last member, the "next" ordinal number will be the set
1051y o o ¢ sMy o o o P01, o o o Xy o o o

of all ordinals constructed so far.

In general we use lower case Greek letters to denote ordinal numbers. Notice
that by our definition of ordinal number, if o , 8 are ordinal numbers, o will precede
¢ (i.e. be smallgr than ¢ )y written « < @ , Jjust in case o€ g . Thus the
ordinal numbers are totally ordered by € . Indeed they are well-ordered by e .
Moreover, regarded as the set of all smaller ordinal numbers, each ordinal number is

itself well-ordered by € .

Now, each ordinal number has associated with it a canmonical well-ordering :

namely € . It can be shown that every well-ordered set P can be put into an order—



preserving, one-one correspondence with a unique ordinal, called the order—type of P,
written otp(P). In this way the ordinal numbers can be used to "count" the number of
elements in any well—ordered set (otp(P) being the answer for the well-ordered set P).
But by Zermelo's Well-Ordering Theorem (which is a consequence of the Axiom of Choice),
every set can be well-ordered. Hence we may use the ordinal numbers to "count" the
elements of any set. The problem here is that the result of our counting depends
upon the well-ordering chosen. Now in the case of finite sets we are used to the
fact that it does not matter in which order we count the elements of that set ; the
answer will always be the same., But for infinite sets this is no longer the case.
Different well-orderings of the same set can lead to different results to the process
of counting the elements of that set. For example, consider the set,w, of natural
numbers. Under the usual well-ordering, this set,w,has order-type w . But we can
also well-order the set w as follows:

$0,2)4) ¢ o ¢ ¢ o ¢ 91,3,55 ¢ ¢« ¢« o o o} o
Under this well-ordering the order-type of the same set w is the ordinal number
W+w o which is the second ordinal constructed by taking the set of all previous
ordinals when that set has no largest member. Thus, although we can use the ordinal
numbers for "counting" infinite sets, they are really only suited for measuring the

size of well-ordered sets. Fortunately, however, using the ordinal numbers we may

obtain a number system which is able to "count" the elements of an arbitrary set.

We make use of the fact that the ordinal numbers are themselves well-ordered by € .

Given a set X, we define its cardinality to be the least ordinal number o
vhich may be put into one-one correspondence with X. Zquivalently, the cardinality
of X is the least order-type of all well-orderings of X. The cardinality of X is
usually denoted by 1X|. Any ordinal number which equals [X| for some set X is called
a cardinal number. It is immediate from this definition that an ordinal number o will
be a cardinal number iff it cannot be put into one-one correspondence with any
smaller ordinal number. Clearly, 0,1,2, . « « o0, « « o are all cardinal numbers.

So too is w . But w+1l, w+2, etc. are not cardinal numbers, since each may be put

into one-one correspondence with w . The first cardinal after w is denoted by )



