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Preface

Striking developments have taken place since 1980 in feedback control theory. The subject has be-
come both more rigorous and more applicable. The rigor is not for its own sake, but rather that even
in an engineering discipline rigor can lead to clarity and to methodical solutions to problems. The
applicability is a consequence both of new problem formulations and new mathematical solutions
to these problems. Moreover, computers and software have changed the way engineering design is
done. These developments suggest a fresh presentation of the subject, one that exploits these new
developments while emphasizing their connection with classical control.

Control systems are designed so that certain designated signals, such as tracking errors and
actuator inputs, do not exceed pre-specified levels. Hindering the achievement of this goal are
uncertainty about the plant to be controlled (the mathematical models that we use in representing
real physical systems are idealizations) and errors in measuring signals (sensors can measure signals
only to a certain accuracy). Despite the seemingly obvious requirement of bringing plant uncertainty
explicitly into control problems, it was only in the early 1980s that control researchers re-established
the link to the classical work of Bode and others by formulating a tractable mathematical notion
of uncertainty in an input-output framework and developing rigorous mathematical techniques to
cope with it. This book formulates a precise problem, called the robust performance problem, with
the goal of achieving specified signal levels in the face of plant uncertainty.

The book is addressed to students in engineering who have had an undergraduate course in
signals and systems, including an introduction to frequency-domain methods of analyzing feedback
control systems, namely, Bode plots and the Nyquist criterion. A prior course on state-space theory
would be advantageous for some optional sections, but is not necessary. To keep the development
elementary, the systems are single-input/single-output and linear, operating in continuous time.

Chapters 1 to 7 are intended as the core for a one-semester senior course; they would need
supplementing with additional examples. These chapters constitute a basic treatment of feedback
design, containing a detailed formulation of the control design problem, the fundamental issue
of performance/stability robustness tradeoff, and the graphical design technique of loopshaping,
suitable for benign plants (stable, minimum phase). Chapters 8 to 12 are more advanced and
are intended for a first graduate course. Chapter 8 is a bridge to the latter half of the book,
extending the loopshaping technique and connecting it with notions of optimality. Chapters 9 to
12 treat controller design via optimization. The approach in these latter chapters is mathematical
rather than graphical, using elementary tools involving interpolation by analytic functions. This
mathematical approach is most useful for multivariable systems, where graphical techniques usually
break down. Nevertheless, we believe the setting of single-input/single-output systems is where this
new approach should be learned.

There are many people to whom we are grateful for their help in this book: Dale Enns for
sharing his expertise in loopshaping; Raymond Kwong and Boyd Pearson for class testing the book;



and Munther Dahleh, Ciprian Foias, and Karen Rudie for reading earlier drafts. Numerous Caltech
students also struggled with various versions of this material: Gary Balas, Carolyn Beck, Bobby
Bodenheimer, and Roy Smith had particularly helpful suggestions. Finally, we would like to thank
the AFOSR, ARO, NSERC, NSF, and ONR for partial financial support during the writing of this
book.
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Chapter 1

Introduction

Without control systems there could be no manufacturing, no vehicles, no computers, no regulated
environment—in short, no technology. Control systems are what make machines, in the broadest
sense of the term, function as intended. Control systems are most often based on the principle
of feedback, whereby the signal to be controlled is compared to a desired reference signal and the
discrepancy used to compute corrective control action. The goal of this book is to present a theory
of feedback control system design that captures the essential issues, can be applied to a wide range
of practical problems, and is as simple as possible.

1.1 Issues in Control System Design

The process of designing a control system generally involves many steps. A typical scenario is as
follows:

1.

10.

11.

Study the system to be controlled and decide what types of sensors and actuators will be used
and where they will be placed.

. Model the resulting system to be controlled.

. Simplify the model if necessary so that it is tractable.
. Analyze the resulting model; determine its properties.
. Decide on performance specifications.

. Decide on the type of controller to be used.

. Design a controller to meet the specs, if possible; if not, modify the specs or generalize the

type of controller sought.

. Simulate the resulting controlled system, either on a computer or in a pilot plant.

. Repeat from step 1 if necessary.

Choose hardware and software and implement the controller.

Tune the controller on-line if necessary.
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It must be kept in mind that a control engineer’s role is not merely one of designing control
systems for fixed plants, of simply “wrapping a little feedback” around an already fixed physical
system. It also involves assisting in the choice and configuration of hardware by taking a system-
wide view of performance. For this reason it is important that a theory of feedback not only lead
to good designs when these are possible, but also indicate directly and unambiguously when the
performance objectives cannot be met.

It is also important to realize at the outset that practical problems have uncertain, non-
minimum-phase plants (non-minimum-phase means the existence of right half-plane zeros, so the
inverse is unstable); that there are inevitably unmodeled dynamics that produce substantial un-
certainty, usually at high frequency; and that sensor noise and input signal level constraints limit
the achievable benefits of feedback. A theory that excludes some of these practical issues can
still be useful in limited application domains. For example, many process control problems are so
dominated by plant uncertainty and right half-plane zeros that sensor noise and input signal level
constraints can be neglected. Some spacecraft problems, on the other hand, are so dominated by
tradeoffs between sensor noise, disturbance rejection, and input signal level (e.g., fuel consumption)
that plant uncertainty and non-minimum-phase effects are negligible. Nevertheless, any general
theory should be able to treat all these issues explicitly and give quantitative and qualitative results
about their impact on system performance.

In the present section we look at two issues involved in the design process: deciding on perfor-
mance specifications and modeling. We begin with an example to illustrate these two issues.

Example A very interesting engineering system is the Keck astronomical telescope, currently
under construction on Mauna Kea in Hawaii. When completed it will be the world’s largest. The
basic objective of the telescope is to collect and focus starlight using a large concave mirror. The
shape of the mirror determines the quality of the observed image. The larger the mirror, the more
light that can be collected, and hence the dimmer the star that can be observed. The diameter of
the mirror on the Keck telescope will be 10 m. To make such a large, high-precision mirror out of
a single piece of glass would be very difficult and costly. Instead, the mirror on the Keck telescope
will be a mosaic of 36 hexagonal small mirrors. These 36 segments must then be aligned so that
the composite mirror has the desired shape.

The control system to do this is illustrated in Figure 1.1. As shown, the mirror segments
are subject to two types of forces: disturbance forces (described below) and forces from actuators.
Behind each segment are three piston-type actuators, applying forces at three points on the segment
to effect its orientation. In controlling the mirror’s shape, it suffices to control the misalignment
between adjacent mirror segments. In the gap between every two adjacent segments are (capacitor-
type) sensors measuring local displacements between the two segments. These local displacements
are stacked into the vector labeled y; this is what is to be controlled. For the mirror to have the
ideal shape, these displacements should have certain ideal values that can be pre-computed; these
are the components of the vector r. The controller must be designed so that in the closed-loop
system y is held close to 7 despite the disturbance forces. Notice that the signals are vector valued.
Such a system is multivariable.

Our uncertainty about the plant arises from disturbance sources:

e As the telescope turns to track a star, the direction of the force of gravity on the mirror
changes.

o During the night, when astronomical observations are made, the ambient temperature changes.
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disturbance forces

mirror y
segments

— controller actuators

sensors

Figure 1.1: Block diagram of Keck telescope control system.

e The telescope is susceptible to wind gusts.
and from uncertain plant dynamics:

e The dynamic behavior of the components—mirror segments, actuators, sensors—cannot be
modeled with infinite precision.

Now we continue with a discussion of the issues in general.

Control Objectives

Generally speaking, the objective in a control system is to make some output, say y, behave in a
desired way by manipulating some input, say u. The simplest objective might be to keep y small
(or close to some equilibrium point)—a regulator problem—or to keep y — r small for r, a reference
or command signal, in some set—a servomechanism or servo problem. Examples:

e On a commercial airplane the vertical acceleration should be less than a certain value for
passenger comfort.

e In an audio amplifier the power of noise signals at the output must be sufficiently small for
high fidelity.

e In papermaking the moisture content must be kept between prescribed values.

There might be the side constraint of keeping u itself small as well, because it might be constrained
(e.g., the flow rate from a valve has a maximum value, determined when the valve is fully open)
or it might be too expensive to use a large input. But what is small for a signal? It is natural to
introduce norms for signals; then “y small” means “||y|| small.” Which norm is appropriate depends
on the particular application.

In summary, performance objectives of a control system naturally lead to the introduction of
norms; then the specs are given as norm bounds on certain key signals of interest.
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Models

Before discussing the issue of modeling a physical system it is important to distinguish among four
different objects:

1. Real physical system: the one “out there.”

2. Ideal physical model: obtained by schematically decomposing the real physical system into
ideal building blocks; composed of resistors, masses, beams, kilns, isotropic media, Newtonian
fluids, electrons, and so on.

3. Ideal mathematical model: obtained by applying natural laws to the ideal physical model;
composed of nonlinear partial differential equations, and so on.

4. Reduced mathematical model: obtained from the ideal mathematical model by linearization,
lumping, and so on; usually a rational transfer function.

Sometimes language makes a fuzzy distinction between the real physical system and the ideal
physical model. For example, the word resistor applies to both the actual piece of ceramic and
metal and the ideal object satisfying Ohm’s law. Of course, the adjectives real and ideal could be
used to disambiguate.

No mathematical system can precisely model a real physical system; there is always uncertainty.
Uncertainty means that we cannot predict exactly what the output of a real physical system will
be even if we know the input, so we are uncertain about the system. Uncertainty arises from two
sources: unknown or unpredictable inputs (disturbance, noise, etc.) and unpredictable dynamics.

What should a model provide? It should predict the input-output response in such a way that
we can use it to design a control system, and then be confident that the resulting design will work
on the real physical system. Of course, this is not possible. A “leap of faith” will always be required
on the part of the engineer. This cannot be eliminated, but it can be made more manageable with
the use of effective modeling, analysis, and design techniques.

Mathematical Models in This Book

The models in this book are finite-dimensional, linear, and time-invariant. The main reason for this
is that they are the simplest models for treating the fundamental issues in control system design.
The resulting design techniques work remarkably well for a large class of engineering problems,
partly because most systems are built to be as close to linear time-invariant as possible so that they
are more easily controlled. Also, a good controller will keep the system in its linear regime. The
uncertainty description is as simple as possible as well.

The basic form of the plant model in this book is

y=(P+Au+n.

Here y is the output, u the input, and P the nominal plant transfer function. The model uncertainty
comes in two forms:

n: unknown noise or disturbance
A: unknown plant perturbation
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Both n and A will be assumed to belong to sets, that is, some a priori information is assumed
about n and A. Then every input u is capable of producing a set of outputs, namely, the set of
all outputs (P + A)u+n as n and A range over their sets. Models capable of producing sets of
outputs for a single input are said to be nondeterministic. There are two main ways of obtaining
models, as described next.

Models from Science

The usual way of getting a model is by applying the laws of physics, chemistry, and so on. Consider
the Keck telescope example. One can write down differential equations based on physical principles
(e.g., Newton’s laws) and making idealizing assumptions (e.g., the mirror segments are rigid). The
coefficients in the differential equations will depend on physical constants, such as masses and
physical dimensions. These can be measured. This method of applying physical laws and taking
measurements is most successful in electromechanical systems, such as aerospace vehicles and robots.
Some systems are difficult to model in this way, either because they are too complex or because
their governing laws are unknown.

Models from Experimental Data

The second way of getting a model is by doing experiments on the physical system. Let’s start
with a simple thought experiment, one that captures many essential aspects of the relationships
between physical systems and their models and the issues in obtaining models from experimental
data. Consider a real physical system—the plant to be controlled—with one input, u, and one
output, y. To design a control system for this plant, we must understand how u affects y.

The experiment runs like this. Suppose that the real physical system is in a rest state before
an input u is applied (i.e., v = y = 0). Now apply some input signal u, resulting in some output
signal y. Observe the pair (u,y). Repeat this experiment several times. Pretend that these data
pairs are all we know about the real physical system. (This is the black boz scenario. Usually, we
know something about the internal workings of the system.)

After doing this experiment we will notice several things. First, the same input signal at different
times produces different output signals. Second, if we hold u = 0, y will fluctuate in an unpredictable
manner. Thus the real physical system produces just one output for any given input, so it itself
is deterministic. However, we observers are uncertain because we cannot predict what that output
will be.

Ideally, the model should cover the data in the sense that it should be capable of producing
every experimentally observed input-output pair. (Of course, it would be better to cover not just
the data observed in a finite number of experiments, but anything that can be produced by the real
physical system. Obviously, this is impossible.) If nondeterminism that reasonably covers the range
of expected data is not built into the model, we will not trust that designs based on such models
will work on the real system.

In summary, for a useful theory of control design, plant models must be nondeterministic, having
uncertainty built in explicitly.

Synthesis Problem

A synthesis problem is a theoretical problem, precise and unambiguous. Its purpose is primarily
pedagogical: It gives us something clear to focus on for the purpose of study. The hope is that
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the principles learned from studying a formal synthesis problem will be useful when it comes to
designing a real control system.

The most general block diagram of a control system is shown in Figure 1.2. The generalized plant

w 2z
generalized
plant
U Yy
controller

Figure 1.2: Most general control system.

consists of everything that is fixed at the start of the control design exercise: the plant, actuators
that generate inputs to the plant, sensors measuring certain signals, analog-to-digital and digital-
to-analog converters, and so on. The controller consists of the designable part: it may be an electric
circuit, a programmable logic controller, a general-purpose computer, or some other such device.
The signals w, z, y, and u are, in general, vector-valued functions of time. The components of w
are all the exogenous inputs: references, disturbances, sensor noises, and so on. The components of
z are all the signals we wish to control: tracking errors between reference signals and plant outputs,
actuator signals whose values must be kept between certain limits, and so on. The vector y contains
the outputs of all sensors. Finally, v contains all controlled inputs to the generalized plant. (Even
open-loop control fits in; the generalized plant would be so defined that y is always constant.)

Very rarely is the exogenous input w a fixed, known signal. One of these rare instances is where
a robot manipulator is required to trace out a definite path, as in welding. Usually, w is not fixed
but belongs to a set that can be characterized to some degree. Some examples:

e In a thermostat-controlled temperature regulator for a house, the reference signal is always
piecewise constant: at certain times during the day the thermostat is set to a new value. The
temperature of the outside air is not piecewise constant but varies slowly within bounds.

e In a vehicle such as an airplane or ship the pilot’s commands on the steering wheel, throttle,
pedals, and so on come from a predictable set, and the gusts and wave motions have amplitudes
and frequencies that can be bounded with some degree of confidence.

e The load power drawn on an electric power system has predictable characteristics.

Sometimes the designer does not attempt to model the exogenous inputs. Instead, she or he
designs for a suitable response to a test input, such as a step, a sinusoid, or white noise. The
designer may know from past experience how this correlates with actual performance in the field.
Desired properties of z generally relate to how large it is according to various measures, as discussed
above.
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Finally, the output of the design exercise is a mathematical model of a controller. This must
be implementable in hardware. If the controller you design is governed by a nonlinear partial
differential equation, how are you going to implement it? A linear ordinary differential equation
with constant coefficients, representing a finite-dimensional, time-invariant, linear system, can be
simulated via an analog circuit or approximated by a digital computer, so this is the most common
type of control law.

The synthesis problem can now be stated as follows: Given a set of generalized plants, a set
of exogenous inputs, and an upper bound on the size of z, design an implementable controller to
achieve this bound. How the size of z is to be measured (e.g., power or maximum amplitude)
depends on the context. This book focuses on an elementary version of this problem.

1.2 What Is in This Book

Since this book is for a first course on this subject, attention is restricted to systems whose models
are single-input/single-output, finite-dimensional, linear, and time-invariant. Thus they have trans-
fer functions that are rational in the Laplace variable s. The general layout of the book is that
Chapters 2 to 4 and 6 are devoted to analysis of control systems, that is, the controller is already
specified, and Chapters 5 and 7 to 12 to design.

Performance of a control system is specified in terms of the size of certain signals of interest. For
example, the performance of a tracking system could be measured by the size of the error signal.
Chapter 2, Norms for Signals and Systems, looks at several ways of defining norms for a signal u(t);
in particular, the 2-norm (associated with energy),

( /_ Z u(t)2dt> "

the co-norm (maximum absolute value),
max [u(?)],
and the square root of the average power (actually, not quite a norm),
1 T ) 1/2
lim — t)“dt ;
<T1—I>I;o o7 | v )

Also introduced are two norms for a system’s transfer function G(s): the 2-norm,

6= (52 [ 6t -

and the co-norm,
[Glloo := max |G(jew)|.

Notice that ||G||oc equals the peak amplitude on the Bode magnitude plot of G. Then two very
useful tables are presented summarizing input-output norm relationships. For example, one table
gives a bound on the 2-norm of the output knowing the 2-norm of the input and the co-norm of the
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C

C

Figure 1.3: Single-loop feedback system.

transfer function. Such results are very useful in predicting, for example, the effect a disturbance
will have on the output of a feedback system.

Chapters 3 and 4 are the most fundamental in the book. The system under consideration is
shown in Figure 1.3, where P and C are the plant and controller transfer functions. The signals are
as follows:

reference or command input
tracking error

control signal, controller output
plant disturbance

plant output

sensor noise

S asg o

In Chapter 3, Basic Concepts, internal stability is defined and characterized. Then the system is
analyzed for its ability to track a single reference signal 7—a step or a ramp—asymptotically as
time increases. Finally, we look at tracking a set of reference signals. The transfer function from
reference input r to tracking error e is denoted S, the sensitivity function. It is argued that a useful
tracking performance criterion is ||W15||oo < 1, where W is a transfer function which can be tuned
by the control system designer.

Since no mathematical system can exactly model a physical system, we must be aware of how
modeling errors might adversely affect the performance of a control system. Chapter 4, Uncertainty
and Robustness, begins with a treatment of various models of plant uncertainty. The basic technique
is to model the plant as belonging to a set P. Such a set can be either structured—for example,
there are a finite number of uncertain parameters—or unstructured—the frequency response lies in
a set in the complex plane for every frequency. For us, unstructured is more important because it
leads to a simple and useful design theory. In particular, multiplicative perturbation is chosen for
detailed study, it being typical. In this uncertainty model there is a nominal plant P and the family
P consists of all perturbed plants P such that at each frequency w the ratio P(jw)/P(jw) lies in a
disk in the complex plane with center 1. This notion of disk-like uncertainty is key; because of it
the mathematical problems are tractable.

Generally speaking, the notion of robustness means that some characteristic of the feedback
system holds for every plant in the set P. A controller C provides robust stability if it provides
internal stability for every plant in P. Chapter 4 develops a test for robust stability for the multi-
plicative perturbation model, a test involving C' and P. The test is ||W2T||ooc < 1. Here T is the
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complementary sensitivity function, equal to 1 — S (or the transfer function from r to y), and Ws
is a transfer function whose magnitude at frequency w equals the radius of the uncertainty disk at
that frequency.

The final topic in Chapter 4 is robust performance, guaranteed tracking in the face of plant
uncertainty. The main result is that the tracking performance spec |W1S||o < 1 is satisfied for all
plants in the multiplicative perturbation set if and only if the magnitude of |W1S| + |WT| is less
than 1 for all frequencies, that is,

[IW1S] + [W2T[|loo < 1. (L1

This is an analysis result: It tells exactly when some candidate controller provides robust perfor-
mance.

Chapter 5, Stabilization, is the first on design. Most synthesis problems can be formulated like
this: Given P, design C so that the feedback system (1) is internally stable, and (2) acquires some
additional desired property or properties, for example, the output y asymptotically tracks a step
input 7. The method of solution presented here is to parametrize all Cs for which (1) is true and
then to find a parameter for which (2) holds. In this chapter such a parametrization is derived; it
has the form

X+ MQ

C=y—no’

where N, M, X, and Y are fixed stable proper transfer functions and @ is the parameter, an
arbitrary stable proper transfer function. The usefulness of this parametrization derives from the
fact that all closed-loop transfer functions are very simple functions of Q; for instance, the sensitivity
function S, while a nonlinear function of C, equals simply MY — MNQ. This parametrization
is then applied to three problems: achieving asymptotic performance specs, such as tracking a
step; internal stabilization by a stable controller; and simultaneous stabilization of two plants by a
common controller.

Before we see how to design control systems for the robust performance specification, it is
important to understand the basic limitations on achievable performance: Why can’t we achieve
both arbitrarily good performance and stability robustness at the same time? In Chapter 6, Design
Constraints, we study design constraints arising from two sources: from algebraic relationships that
must hold among various transfer functions and from the fact that closed-loop transfer functions
must be stable, that is, analytic in the right half-plane. The main conclusion is that feedback control
design always involves a tradeoff between performance and stability robustness.

Chapter 7, Loopshaping, presents a graphical technique for designing a controller to achieve
robust performance. This method is the most common in engineering practice. It is especially
suitable for today’s CAD packages in view of their graphics capabilities. The loop transfer function
is L := PC. The idea is to shape the Bode magnitude plot of L so that (1.1) is achieved, at
least approximately, and then to back-solve for C via C = L/P. When P or P! is not stable, L
must contain Ps unstable poles and zeros (for internal stability of the feedback loop), an awkward
constraint. For this reason, it is assumed in Chapter 7 that P and P~! are both stable.

Thus Chapters 2 to 7 constitute a basic treatment of feedback design, containing a detailed
formulation of the control design problem, the fundamental issue of performance/stability robustness
tradeoff, and a graphical design technique suitable for benign plants (stable, minimum-phase).
Chapters 8 to 12 are more advanced.



