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Introduction

It was tempting to choose something flippant like
On Beyond Inner Functions!

as a title for these lectures because that would have indicated their background
and their conteat much more precisely, at least to those who have heard of the
so-called inner function problem.

Let me begin by explaining what this was all about. A holomorphic function
/ that maps the open unit disk U in C into U is called inner if its radial limits

*(e?) = lim f(re'
£7(") = lim f(re”)

satisfy |f*(e?)] = 1 almost everywhere on the unit circle 7.
Examples of inner functions in U are, first, the Blaschke products

I3 H Ia,l Q; — 2
=cz
oy 1 —a;z’
where lc| = 1, k is a nonnegative integer, {e;} is a sequence in U\{0} (possibly

finite or even empty) that satisfies the convergence-ensuring “Blaschke condi-

tion”
[e'e)

Z(l = |es]) < o0,

1
and, second, the zero-free (usually called “singular”) inner functions

e+ z ;
g(2) = exp{—/ T d#(ew)} )
T€" —Z2

one for every positive Borel measure p on T (including 0) that is singular with
respect to Lebesgue measure.

And that’s all there is:

Every inner function in U 13 a product bg.

We thus have a formula that gives all inner functions in U.

There are many reasons why these functions are important; here are four:

(i) Every f in any of the classical HP-spaces, and even in the Nevanlinna class,
is a Blaschke product times a zero-free function in the same space.

ix



X INTRODUCTION

(ii) Inner functions, and especially Blaschke products, are a fertile source for
counterexamples.

(iii) Beurling’s theorem: The proper closed invariant subspaces of the uni-
lateral shift operator on a separable Hilbert space are in natural one-to-one
correspondence with the inner functions in U (if we identify any two whose ratio
1s constant).

(iv) The Chang-Marshall theorem: The closed algebras between H> and
L*(T) are completely determined by the complex conjugates of the inner func-
tions that they contain.

An excellent reference for all this is Garnett [1], the most recent major book
on these topics, where many older references may also be found.

Let us now see what happens when the domain U is replaced by the open unit
ball B of C™ n > 1. Again, a holomorphic f: B — U is called inner if its radial
limits f*(¢) = lim, »; f(r¢) satisfy |f*(¢)| = 1 for almost every ¢ in the sphere S
that bounds B. (The term “almost every” refers now to Lebesgue measure on S,
i.e., to the unique rotation-invariant positive Borel measure ¢ on S whose total
mass is 1.)

When the function theory of B began to be investigated, one wanted of course
to describe the inner functions in B and to find out whether their role is as
important in B as it is in U.

As a first question—just to illustrate the problem—are there any analogues
of finite Blaschke products in B? In other words, are there any inner functions
in the so-called ball algebra A(B), i.e., in the-set of all functions continuous on
the closure B of B and holomorphic in B?

The answer is no. In fact the following is true:

Ifn>1 and f € A(B), then f(S) = f(B).

This must be obvious to anyone who has even the slightest acquaintance with
analytic varieties. But there is also a completely elementary proof which Frank
Forelli showed me many years ago and which I find very appealing:

Assume 0 is not in f(S), pick 2o in B, let L be a complex line in C™ through zo,
put D = BNL, and let C = SNL be the (oriented) circle that bounds the analytic
disc D. Since n > 1, S is simply connected, hence C can be shrunk to a point
within S, and this shrinks f o C to a point within C\{0}. The winding number
of foC, around the origin of C, is therefore 0, so that f (being holomorphic in
D) has no zero in D. In particular, f(z9) #0. Q.E.D.

A very similar idea can be used to prove that no inner function in B extends
continuously to even one boundary point, and that its oscillations must in fact
be really wild near every boundary point (Theorem 1.2).

On the other hand, it is very easy to prove that the boundary values f* of
any inner function f in B must map S to T in an extremely “evenly distributed”
manner (Theorem 1.3).

In view of all this, the question arose whether there were any inner functions in
B at all when n > 1. (I remember asking this in 1966, but others may, of course,
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have asked it earlier.) Most people who thought about it came to believe that
the answer was no. Section 19.1 of my book Function Theory in the Unit Ball
of C*—called UBC™ in these notes—contains a more elaborate list of related
conjectures.

Every one of these turned out to be false:

In the fall of 1681, A. B. Aleksandrov proved that inner functions did exist
in B for all n. (He also rewrote the above-mentioned section for the recently
published Russian edition of UBC™.) A few weeks later, Erik Low, unawarz of
Aleksandrov’s result, proved the same thing by pushing an earlier construction
of Hakim and Sibony a bit further than they had done.

Thus, inner functions exist in B. However, it seems very unlikely, because of
their inherent pathologies, that they will ever be as explicitly known as they are
in U/, or that they will ever be as important in B as they are in U. For example,
they can certainly not be used in any decent factorization theory (see §10.5),
and they fail to have some of the good approximation properties that they have
in U (Chapter 13).

But the techniques that were developed to solve the inner function problem
have already been used very successfully to prove a variety of existence theorems
for holomorphic functions f with |f*| or Re f* prescribed on S (almost every-
where or in some other approximate sense) and that can also be made to satisfy
various additional interpolation data and growth conditions in B. The present
notes are an exposition of some results obtained in this way.

The Hakim-Sibony-Lew proof uses a “bare hands” attack: The idea is to start
with a small function and to push its absolute value up toward 1 on the bound-
ary with sufficiently good control to achieve the desired result. The ingenious
inductive procedure that is used is quite complicated, but, as Low [2] showed, it
works also on arbitrary strictly pseudoconvex domains.

Aleksandrov [1] used an approximation theorem in L?, for 0 < p < 1 (see
Chapter 9, where, for simplicity, I restrict myself to p = 1/2), to get his “L!-
modification theorem”, which has all sorts of easy consequences (Chapter 10).
There are some technical similarities between Aleksandrov's original proof and
the Hakim-Sibony paper [1], but later he found a much simpler proof, based on
the Ryll-Wojtasczcyk polynomials (Chapter 2). These are homogencous polyno-
mials Wi of degree k that satisfy supg. e oo [|[Wklloo/||[Wkll2 < 00.

Note that the inner functions are (up to multiplication by constants) precisely
those functions f € H?(B) that have |/ f||o = ||f||2. Finding such polynomials
was thus a step in the right direction towards finding inner functions. However,
they were actually constructed in response to the following question by Steve
Wainger: Is the H?(B)-closure of the unit ball of H>°(B) compact in the norm-
topology of H?(B) when n > 17 (Answer: No.)

In these lectures I follow Aleksandrov’s second approach for several reasons.

First, it is the easiest one that I know, and it leads to the spectacularly simple
L2-proof given in Chapter 4.
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Second, it automatically allows one to solve many existence problems of the
type considered here by means of holomorphic functions whose power series
have large prescribed gaps (the “E-functions™ of Chapter 3). This may not be
too exciting, but it should please anyone who, like me, has spent a lot of time
and energy on gap series. See, for example, §4.2 and Chapter 6.

Third, it allows one to replace Lebesgue measure by arbitrary positive Borel
measures in many of the results with hardly any extra work. This pays off, for
instance, in Chapter 5. Also (as Aleksandrov [2] has pointed out) it can be used
to extend theorems proved in B to domains in B whose Silov boundary lies in
S: this idea is not pursued here. however.

The results up to and including Chapter 8 deal mainly with prescribing | /*| on
S. Problems that involve Re f* (Chapters 10, 15, 16) seem to be more delicate.
They depend, at least in the present arrangement, on the L'/2-approximation
theorem of Chapter 9.

In Chapter 17 the mere existence of inner functions is shown to lead to other
interesting functions in B by “pulling back™ one-variable behavior.

[ have not given detailed references for everything that is presented here,
partly because much of the material is not in exactly the form in which it was
originally stated. Basically, Chapter 2 and Appendix II are due to Ryll and
Wojtaszezyk; Chapters 3, 4, 9 and most of 10, 11 are due to Aleksandrov. The
credit for the Lusin-type theorem of Chapter 15 (which was new even in the disc!)
is shared by Aleksandrov and Paula Russo. The striking results of Chapter 8 and
16 are based on the work of Hakim and Sibony.

There are other types of recent constructions in B (for instance, by Globevnik
and Stout [1, 2], Low [3], Forstneri¢ [1]) that are not included here.

Chapter 18 shows that certain function spaces that are “sufficiently close” to
A(B) contain no inner functions.

Let me go one step further and end this overly long introduction with a
distribution-theoretic “proof” that inner functions don't exist in B when n > 1.

Suppose that f is inner in B. Then its boundary function (call it f rather
than f*) satisfies the tangential Cauchy-Riemann equations in the distribution
sense. Let L be any one of the tangential C-R operators. Then Lf = 0. Since f
is inner, ff =1 a.e. on S. Thus

0=L(1) = L(ff) = fL] + JLf = fL].

Since |f| = 1 a.e., Lf = 0. Thus both f and f are holomorphic; hence f is
constant. What went wrong?
The following diagram shows how the various chapters depend on each other.
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Notation

The terminology and notation used in these notes will be almost exactly as
in my book Function Theory in the Unit Ball of C™, which will be referred to

by the acronym
uBcCn.

In particular, C™ is the n-dimensional vector space over the complex field C with

mner product
n
(2, w) = Z 2,W;y,
1=1

norm |z| = (z.2)'/2, and corresponding open unit ball
B=B,={zeC™|z| <1}

whose boundary is the sphere
S=0B,={¢eC:¢|=1})

Thus B = BU S is the closed unit ball.

If r >0, then rB = {rz:z2 € B} = {2:|2| < r}.

The term “measure” will refer to finite Borel measures j. The symbol ||u||
denotes the total variation of .

o denotes the unique rotation-invariant probability measure on S. The Le-
besgue spaces LP(o) have their customary meaning, and norms || f{f, will refer
to o unless the contrary is stated.

If s 1s a measure on S, the symbols

plo p<o

mean that y is singular (or absolutely continuous) with respect to o.
When n = 1, then B, S, o will usually be replaced by U, T, m.
If f: B — C is any function, then
(a) for 0 < r < 1, f, is defined on S by

Jr(§) = J(r¢);
(b) for each ¢ € S, the “slice function” f, is defined in U by
fe(A) = f(X¢);

XV



Xvi NOTATION

(¢) f* is defined by
() = lim 1(rs)
at those ¢ € S where this limit exists. H(B) is the class of all holomorphic
f:B—C. fe H®(B)if f € H(B) and the sup-norm

[Ifllc =sup{|f(2)]:2 € B} < co.

A(B) = C(B)N H(B) is the ball algebra. HP(B), for 0 < p < oo, is the space of
all f € H(B) that have

1/p
sup 1l = sup { [ Irar} <.
0<r<1 0<r<l1 S

P|f] is the Poisson integral of f € L!(¢), with respect to the ordinary Poisson
kernel. Thus P[f] is harmonic in B (not M-harmonic, as in UBC™). Similarly,
P[du] is the Poisson integral of the measure p on S.

U = U(n) is the (compact) group of all unitary operators on C*, with Haar
measure dU.

LSC and USC stand for lower semicontinuous and upper semicontinuous, re-
spectively.
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1. The Pathology of Inner Functions

1.1. INNER FUNCTIONS. By definition, an inner function in B is a noncon-
stant [ € H>(B) that has |f*(¢)| =1 a.e. [o] on S.

(The word “nonconstant” is not always included in this definition, but it seems
best to say it now rather than have to repeat it every time it is needed.)

This section describes two properties of inner functions in B (when n > 1)
which, at first glance, almost scem to contradict each other. On the one hand,
every inner function is extremely oscillatory near every boundary point; in par-
ticular, no inner function extends continuously to even one boundary point. This
is a rather weak consequence of Theorem 1.2.

On the other hand, if f is inner and f(0) = 0, then its radial limits f* map
S to the unit circle T is such an evenly distributed manner that f* preserves
measure: Explicitly, this means that

a((f*)HE)) = m(E)

for every Borel set £ C T, where m denotes Lebesgue measure on T normalized
so m(T) = 1. This is a special case of the (remarkably easy) Theorem 1.3.

1.2. THEOREM. Suppose that

(a) T is a nonempty open set in S,

(b)r, /1 as j — oo,

(¢c) fe H>®(B), f is not constant, |f*(¢)| =1 a.e. onT.
Then I' has a dense Gg-subset H such that the set

(l) {f(rjg)J:1)273~}
w5 dense in the unit disc U for every ¢ € H.

Note that the radii ; are independent of f.
PROOF. Let A be a countable dense subset of U. For &« € A and positive
integers 1 and k define

(2) Eika={se€l:|f(rj¢) —a| > 1/k for all j > 1},
(3) He =14 | Bips
1,k

1



2 THE PATHOLOGY OF INNER FUNCTIONS

and

(4) H= () Ha.

acA

It is clear that each E, o is (relatively) closed in I'. If none of them has an
interior, then each H, is a dense G5 in ' and so is H. Since ¢ € H, cxactly
when

(5) liminf |f(r;¢) — a| =0,
J—0

H has the required property.

So let us assume, to reach a contradiction, that some E, x , has nonempty
interior. Then there is a point n € I’ and a t < 1 such that E, j , contains all
¢ € S for which t < Re(¢,n).

Put 0 = {z € B:t < Re(z,7)}.

Then |f(2) —a| > 1/kif z€ QNr;S and ) > u.

But f(QNr,B) C f(QNr;S). A simple winding-number proof of this is almost
exactly like the one that occurs in the Introduction, because {1 N r;S is simply
connected.

Hence |f(z) —a| > 1/kif z€ Q2N r;B and j > 1. Letting j — oo, we sce that

(6) If(z) —a] > 1/k for all z € Q.

Now fix a point p € () close to n. If ¢ € ' is such that lim f(r¢) exists as
r — 1, then f has the same limit along the line segment from p to ¢; this follows
from the Lindelof-Cirka theorem (Theorem 8.4.4 in UB C™.) Therefore p lies on
a complex line L such that the disc D = LN B lies in (2, and the restriction f|p
of f to D is an inner function (of one complex variable). By (6), f|p is bounded
from a (by 1/k). Hence f|p is constant, and this constant has modulus 1.

Thus |f(p)| = 1. This holds for all p in some nonempty open subset of (0.
Therefore f is constant, and we have our contradiction.

1.3. THEOREM. If f 1s an inner function in B and f(0) = 0, then

(1) e gryde = oo [ nie)as

for all bounded Borel measurable functions h on T.

If we let h be the characteristic function of a set £ C T, we obtain the
statement made in §1.1.

PROOF. First, (1) holds if h(e?’) = e**? and k = 0. If k is a positive integer,
the right side of (1) is 0 and so is the left, since

o fVdo — S k_J.
/5“‘ f*)do /(f)d F(0)F =0

S



TIIE PATHOLOGY OF INNER FUNCTIONS 3

Taking complex conjugates, we get the same result for & < 0. Hence (1) holds
when A is any trigonometric polynomial. The general case follows from the dom-

inated convergence theorem.
1.4, REMARK. If we omit the assumption f(0) = 0 in Theorem 1.3, then the
result is

/S (ho f*)do = PR(J(0)).



2. RW-Sequences

The following theorem furnishes one of the tools that wili be used in much of
our later work.

2.1. THEOREM. To each dimension n corresponds a constant c¢(n) > 0 with
the following property:

If it 1s a positve Borel measure on S, then there erist polynomials Wy (k =
1,2,3,...) in the varables zy,. .., 2n such that, for every k,

( ) Wi 18 homogeneous, of degree k,
(b) [Wk( ) <1 for all ¢ €S,
(c) [¢ IWk[>da > e(n), and

f Wiel2du > e(n) [g du.

The existence of such sequences {Wy} was proved (except for (d), which turns
out to be very easy) by Ryll and Wojtaszczyk [1]. For brevity, we call them RW-
sequernces.

The proof of Theorem 2.1 will use the following geometric facts about S.

2.2. LEMMA. Assume n > 1 and define

(1) d(s,n) = (1= [{¢,m)[*)/?
for¢e S, neS and put
(2) Es(n) = {sc € S:d(n,¢) <8}  (0<é<1).

Then d satisfies the triangle inequality, and
(3) o(Es(n)) = 62

PROOF. Consideration of the orthogonal projection of ¢ into the space spanned
by n shows that

(4) d(¢,n) = min{[¢ — an|:a € C}

and that |a| < 1 when this minimum is attained. If now ¢, u,w are in S, choose
a, 3 so that

(5) d(¢,n) = ¢ —an|, d(n,w)=|n—Buw|
4



RW-SEQUENCES 5
Hence
d¢.w) < ¢ —aBuw| <[¢—an| + |o [n - Buw|
<d(¢,n) +d(n,w).
Next, setting ¢ = (1 — 6%)1/2, we see that ¢ € Es(n) if and only if

t<lic,m <L
Formula 1.4.5(2) of UB C™ shows therefore that
1
(6) a(Es(n)) =2(n- 1)/ (1- rz)"‘zrdr = §2n-2
t

This proves the lemma. Note that d is not a metric on S, but it may be
regarded as a metric on the complex projective space whose points are the circles

(7) T.={e¥:-n<0< 7} (c€8s).

2.3. PROOF OF THEOREM 2.1. When n = 1, Wi(z) = zF will do with
¢(1) = 1. So assume n > 1, choose & > 1, pick 6 > 0 so that
(1) 8ké% =1,
and let {n1,...,na } be maximal with respect to having the sets Es(7;) pairwise
disjoint. Since d satisfies the triangle inequality, S is then covered by the sets
Eas(ny). Hence,

1=0(S) < Mo(Ey5) = M(26)2"2 = M(2k)!—™
which gives a lower estimate for M, namely,
(2) M > (2k)*~ 1L
Next, let rq, ..., rar be Rademacher functions: They are orthonormal on [0, 1],

and 7;(t) = £1. Define
M

(3) Qu(z) =D ri(t)zm)*  (0<t<1, zeCM).
J=1
Proposition 1.4.9 of UB C™ shows that
)2 (” - 1)’“

The orthonormality of {rj} leads therefore to

1 M
[ et [ iasipas) = [ Dl mP et

oy (=1

- M(n —1+k)!

. (2k)"(n - 1)k!
= (n—-1+k)

> 1.



