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Preface

The Institute for Constructive Mathematics at the University of
South Florida had its beginnings in 1985. Its goal is to foster basic
research in the variety of mathematical areas that interface with ap-
proximation theory, numerical analysis, and pattern recognition. A
significant component of this activity has been to provide an atmo-
sphere conducive to research, not only for faculty at U.S.F., but also
for distinguished visiting researchers from the U.S. and abroad. In
its maiden year, the Institute hosted mathematicians from Canada,
England, Israel, Germany, South Africa, Sweden, Switzerland, the
People’'s Republic of China, as well as a variety of universities in
the U.S. Measured by any reasonable standard, the individual and joint
accomplishments of these visitors have resulted in substantial ad-
vancements in approximation theory as well as greater international

cooperation and collaboration.

The papers contained in this Proceedings of the Tampa Approxima-
tion Seminar serve as a testimonial to the quality and variety of re-
search activities conducted at the Institute. Although the main theme
is approximation theory, this collection reflects the individual in-
terests of the visitors to the Institute during the academic year
1985-1986. It is a pleasure to thank the following mathematicians for

their contributions to this issue:

P.R. Graves-Morris J. Nuttall B. Shekhtman
A.L. Levin J. Palagallo H. Stahl

D. Lubinsky T. Price J. Waldvogel
H. Mhaskar L. Reichel

The editor is also indebted to Prof. K. Pothoven, Chairman of the
Department of Mathematics at U.S.F. for his active role in creating
the Institute as well as hosting its guests. The majority of the word
processing for this Proceedings is the work of Ms. Selma Canas whose

careful and dedicated handling is deserving of special thanks.

F Y
" Y N v E.B. Saff
— Director, Institute for
| 4 A\ Constructive Mathematics

May 15, 1987
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A FAST ALGORITHM TO SOLVE KALMAN'S
PARTIAL REALISATION PROBLEM
FOR SINGLE INPUT, MULTI-OUTPUT SYSTEMS

P. R. Craves-Morris and J. M. Wilkins

School of Mathematical Sciences, DeAMeT Py
University of Bradford, Cambridge University,
Bradford, West Yorkshire, Cambridge,

England. England.

Abstract A brief review is given of the solution of the scalar
partial realisation problem using Padé approximants. The use of

simultaneous Padé approximants in the solution of the single input,
multi-output partial realisation problem is then discussed. We show
how analogues of Frobenius identities are derived for simultaneous
Padé approximants of two series, and we give twelve such identities.
We show how some of these identities are combined to construct ana-
logues of Baker's and Kronecker's algorithms. These analcgues are
fast algorithms for simultaneous Padé approximation of two series, and
so also for a solution of the single input, two output partial reali-

sation problem.

1. Introduction

In Kailath's book [14] and in the recent reviews by Gragg and
Lindquist [10] and by Bultheel and van Barel [9], the authors explain
how Padé approximants are used to construct a partial realisation of
a single input, single output system. A certain number of Markov
parameters of the system are specified as the data, and the Padé
method is used to determine the values of the circuit elements. It is
also known that simultaneous Padé approximants may be used to construct
a partial realisation of a single input, multi-output system in terms
of its Markov parameters [13]. This approach provides a solution of
Kalman's partial realisation problem for systems [15].

For example, let hl’ h2’ hS’ ... be the Markov parameters for a
single input, single output system. These parameters formally define
the function

(1.1) h(z): = hyz b+ 2™ v hgz™ v e by 2 N



Ignoring the exceptional, degenerate cases [2, Chap. 2; 3, Chap. 1],
an [N/N] type Padé approximant of h(z) takes the form

=] =2 -N

ajz *asz e Foayz
(1.2) (N/NI, (2) - 2 -N

1+ blz + bzz e sz
with the property that
(1.3) IN/NI (2) = h(z) + oz *N"h
Many methods exist for computing Padé approximants [2.3]. The resul-
ting parameters a1, 8y, vy Ay, bl’ b2, T bN are used to design

a controller canonical realisation of the system [14]1, shown in Fig. 1
for the case of N = 3. The first 2N Markov parameters of this system
are hl’ hZ’ o okl g hZN and in this sense the Padé approximant provides
a partial realisation of h(z).

The equivalent example of a single input, p-output system would
involve El’ EZ’ ey EZN as the Markov parameters to be realised, with
h; € RP . we formally define

=1 =2 -2N

(1.4) h(z) = ﬁlz + EZZ + ® EZNZ +
For the case of p = 2, for example
[ D (1 (1)
hr h h
(1.5) h(z) = L,-1 Z 82 % s B IN| N £ o e
(2) (2) (2)
by ) N

and in this case the simultaneous Padé approximant (SPA) is

(1.6) [N/NJh(z) =
al1(1)2-1 . alz(1)2-2 . a]\gl)Z—N ’ al(2)7_—1 . az(Z)Z—z R a%Z)Z—N
-1 -2 -N -1 -2 -N
1 + blz + bzz oL B sz 1 + blz # bzz + ..t sz
Notice the common denominator in (1.6). The direct interpretation of

the coefficients of (1.6) as values of the circuit elements is shown
in Fig. 2 for the case of N = 2. 1In this case, the denominator poly-
nomial is given by

1 h§1) h§2)
(1.7) Qz) = | 27! n{b) hi2)
,~2 h1(1) hfZ)

up to a (normally irrelevant) constant factor. Of course, Q(z) must
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Fig. 1 Controller canonical form of a single input, single output

digital system.
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Figs 2 Controller canonical form of a single input, two output system.



satisfy a stability test. The equivalent general formula, set in its
general mathematical context (with x = z_l), is given in (2.2). In
this paper, we present algorithms suitable for calculating the denomi-
nator polynomials and numerator polynomials when the determinants are
of high order.

Practical computational methods for this problem have been found
by de Bruin [6,7]1, although his motivation was rather different from
ours. Following Padé's approach [19] toHermite approximation (other-
wise called the Latin polynomial approximation problem), de Bruin
devised regular algorithms for sequential computation of higher order
polynomials from a low order initialisation. In particular, he uses

the recurrence
(1.8) Pi(k;x) = ak(x)Pi(k—l;x) + Bk(x)Pi(k—Z;x) + yk(x)Pi(k—S;x)

(eq (3) of [6]) in which P.(k,x), i = 1,2,3, are the two numerator

polynomials and the denominator polynomial constituting P(k;x), and

P(k;x) is the kth vector polynomial in the sequence. In particular,
if
(1.9) ak(x):= A Bk(x):= ka and Yk(x):= xzyk,

then (1.8), (1.9) and the accuracy-through-order condition (1.4) or
(2.3) may be combined to form a regular algorithm for a generalised
step-line. In the sequence {P(k;x), k=0,1,2,...}, the degrees of the
denominator and numerator polynomials have a relative periodical
increase of (1, 0, 0) , (0, 1, O0) and (0, O, 1) respectively.

Here, we adopt a rather different and almost complementary approach.
Starting with explicit determinantal formulas (2.2),(2.11) etc., we
derive in Section 2 analogues of Frobenius' identities. From these,
explicit versions of all the formulas like (1.8) can be derived; even
the coefficients can be given explicit determinantal forms which
follow from our identities (A) - (L). In Section 2, we develop our
theme by deriving "anti-diagonal' regular algorithms, analogous to
Baker's algorithm [2, p78] for ordinary Padé approximants. The
sequence is a generalised step-line in a four dimensional parameter
space.

In Section 3, we develop an algorithm analogous to Kronecker's
algorithm for an anti-diagonal sequence in the Padé table. Our
analogue, displayed in Figure 6, is based on four term recurrences
like (1.8), and so is also a regular algorithm for a generalised (anti-
diagonal) stepline.

de Bruin's identity (1.8, 1.9) constitutes a generalisation to
single input, two output systems of the Berlekamp algorithm. Other



identities of de Bruin [6,7] constitute, in principle, generalisations
of Berlekamp's algorithm to single input , multi-output systems. Our
algorithm, in Section 3, is a generalisation of Kronecker's algorithm,
as discussed by McEliece and Shearer [16]. The contrast between
McEliece and Shearer's approach and Berlekamp's approach is described
in [17, p369;8]. What is important for our purposes is that Kronecker's
algorithm has a simple modification for reliability, as discussed by
Warner [20] and McEliece and Shearer [16] and that it has a ready
interpretation in terms of the block structure of the Padé table [11].
Our hope is that our algorithm of Section 3 has a simple modification
for reliability similar to the Euclidean modification of Kronecker's
algorithm. It may also be that de Bruin's approach has a modification
for reliability similar to Massey's modification of Berlekamp's

algorithm [18].

2. Analogues of Frobenius Identities

The common denominator polynomial for the SPA of type [Nl,NZ;Nl—ml,

Nz-mz;m] for two series

2.1) # M ey pe g5 et # g 27 et
is
(2.2) gi¥gs Nai Ny-my, No-p5 mlees
_ (1) (1) 1) (2) (2) (2)
= |1
CN1 ch-l CNl—m1+1 CN2 CNz-l CNz—m2+1
(1) (1) (1) ) 2) (2)
O N2 Ny N1 N2 N,-m,
(1) (1) (1) (2) (2) (2)
< CNl—m CNl—m—l e CNl—ml—m+1 CNz—m CNz—m-l e CNz—mz-m+1

up to an arbitrary constant factor, and with the understanding that

c}l) = C(Z): =0 for j < 0. A result, very similar to (2.2), was ori-
ginally derived by de Bruin [5]. From (2.2), it is easily verified

that polynomials P(l)(x) and P(Zj(x) exist for which



o e N,+1
2.33) Q"M = P « O[X 1 ]

. N,+1
2.30) Q" Mot = P O[x ’ ]
with
(2.4) sp (1) ¢ Nyj-my op(2) ¢ N,-m,
(2.5) ot em

and we have used the abbreviation

e

Qoo =M N

g Wy =y oNg =Ty [ o
We view (2.3) as defining P(M (x), P(?¥)(x). Formulas (2.2) and (2.3)
can be combined to construct determinantal representations of P(lj(x)

and P(z)(x). We also define the vector polynomial B[..](X) i E (P(l)(x),
PPy ). 1£Q " 0) # 0, ana N, = N, = N,
(2.6) U /a0 = £00 ¢ oM.

in which the left-hand side is a vector-valued Padé approximant. With
the aid of (2.2) and its companion formulas for P(l)(x) and P(Z)(x), we
can now derive the analogues of Frobenius' identities for SPAs.

Jacobi's identity [1, p 991 is commonly written as

(2.7) D D = D D D D_.
Pq;TS p;T " q;s P3s g3

The notation Dp-r in (2.7) denotes the determinant of some original
square matrix, of which the pth row and rth column have been deleted;

D and qu'rs have analogous meanings. By applying (2.7) to (2.2) with
(p,q,r,s)’= (1,m+1,1,m+1), we obtain identity (A):

(2.8) gtlyNgi Ny-my  No-Tai mly.g CINJ,N, 3 Ny=my,Ny-my+1; m-1)
= Ny Ngs Np=myNo-mydls medlc,y CONp,Ny ;3 Np-my,Ny-m, ;m)
_XQ[Nl—l,NZ—l; Nl—ml—l,Nz-mz;m—ll(X) C(N1+1’N7+1’Nl—ml+[’N7_m7+l;mJ
where
(2.9) CONp N5 Ly,Ly; m) := QEN1oN2s Lpsbas Moy,

With (p,q,r,s) = (1,m+1,1,m1+2) in (2.7), we obtain identity (B):



[N],Ny; Nj-m N, , o
@2.10)  WN1sNps Ny-my, md ey )]C(Nl, ,=15 Np=m N,=my; m-1)
iy oNg—13 Ny~ ml’NZ M%) CONp N5 Npmy Nyomy 5 m)

~xig N~ LNg =25 Ny =my=1,Ny=m 2'1; M) CON+1,N + 15 Np-mp + LN, m+1; m)

We regard identities obtained by interchange of the given series
f(l) =% f(z) as inessentially different. With this proviso, (2.8) and
(2.10) are the only two such identities obtainable from (2.2) using (2.7)
directly. However,

(2,31  g-NpaNgh By aNo-uo s Wl
=-]o 1 0 ... O 0 0 ... O
1) (1) @ (2) (2) (2)
1 ...
N1+1 N CNl—m1+1 CN2 CN2-1 . CNz-m2+1
&) &) (1) @ @ @
. CN1 CNl—l CNl—m CNZ-I CNZ—Z CNz-m2
a 1) (1) 2) (2) 2)
< N12m+1 CNl—m e CNl-ml—m+1 CNz—m Nz—m 1 S CNz—mz-m+1

Schwein's identity [1, p 108] follows from Jacobi's identity in the form
(2.7) and applied to a determinant such as (2.11) [3, p 851.
With (p, q, r, s) = (1, m+2, 1, m +2), we obtain identity (C):

N -my ,N -m,

[N, N,;
(2.12) QM1 M2 M1 2 mlex) C(N 1+2,N,#1; Nyj-m +2,N)-m,*1; m)
[N,,N,; N,-m,+1,N ; m-1
= Q12 17 TN, (x) C(N1+2,N2+1; Nl—m1+1,N2—mz+1;m+1)
N +1,N,; N,-m,+1,N,-m,; m]
+Q 2 1= =27 (x) C(N1+1,N2+1; Nl—m1+1,N2—m2+l; m)

With (p,q,r,s) = (1, m+2, 1, m1+3), we obtain identity (D):

(2.13) qQfN1»Nps Ny=my ,Np-my; md CN;+2,Ny; Np=m +1,N,-m,+1; m)

= N1 oNp=15 Ny-my ,Np-my 5 m-11 .y CNJ+2,Ny+15 Nj-m +1,N,-my+1; m+1)

[N;+1,N,-1; N;-m

+ Q 1P 17™10N2 M5 M) ¢ (N +1,N,+15 Nj=m +1,N,-m,+1; m)

With (p,q,r,s) = (1, m+2, 1, m+2), we obtain identity (E):



2.145 qMNusNzs Ny-my,Np=mgs mle C(Np+2,Np*1; Ny-m +1,N,-m,+2; m)

1

- Q[Nl’NZ; NpTmNpmmt s Mol g ¢ (N +2,N,%1; Nj-m +1,N,-my+1; mel)

[N +1 N N,-m,,N,-m,+1; ml
+Q 1 Wy et~y T (x) C(NJ*1,N,+1; Ny-my+1,N,-m,+1; m)

With (p,q,r,s) = (1, 2, 1, m +2), we obtain identity (F):

(2.15) qtVpsNzi Ny=mpNy-mys m1y oen [*1Ny5 Npomy+1,Ny-m,y 5 m)
= XQL -1 NZ 1 H I\l 1 ,N mz 1 5 m-11] (X) C(N1+2 ,N2+1; Nl'm1+1 ,Nz‘m2+1; m+1)
. Q[N +1,Ny; Ny-my+1,N,-my; m](x) C(Nl’NZ; Ny -my Ny-my s )

With (p,q,r,s) = (1, 2, 1, m1+3), we obtain identity (G):

N,,N,; Ny-m,; No-m,; m) . .
2.16) ™N1oNas Nymmps Npmmas My con +1,N,-15 Npemg Ny oy m)

[N.-1,N

= xq tNi71,Np=25 N

-my-1,N,-m,-1; m-1]
1717527 MR (k) C(Np#+2,Np+1; Ny-my+1,
Nz-m2+1; m+1)

+ q INp*LNp-15 N )

171 N2 M) C(Np LNy Npomy Ny

with (p,q,r,s) = (1, 2, 1, m+2), we obtain identity (H):

N, ,N,3 N,-my,N,-m,; mJ _
2.17)  Q™N1aNz3 Ny7mpNo™mys M) ey +1,N,5 Nj-mg Ny-mp*1; m)

= ggtNy~1.Np-15 Ny-my-1,M5-mp 5 m-1] 0y CN *+2,Ny+1; Np-m +1,N,=m,+1;m+1)

[N,+1,N,; N

¢ glNp*L.MNas Ny=my,Ng-m,*l;

N

m](x) C(Nl’NZ; 1—m1,N2—m2; m)

Next, we consider the determinant in

[N,,N,; N;-m,,N

(2.18) qQtN1oNgs Ny-mpuNp=mps mly [ (cpy™*!

= 0 0 .5 0 1 0 @ e 0
¢S R ¢ ey O
N1 Nl—m1+1 Nl-m1 2 N2 2+1
(1) (1) (1) (2) (2
b'e Gl ce Gy 2 s i
N 1 N1 m1 1 my 1 2 -1 N2 m2
S LD ey (2) (2
1 e Nl—ml-m+1 Nl—m1 m Nz-m e Nz—m m, +1

with (p,q,r,s) = (1, 2, 1, m+2) in (2.7), (2.18), we obtain



identity (I):

2Ny N my sl oy eNy LN, N -my-1,N,-m

[N -m .
(2.19) Q i | j #ihg 3 Mg =By +1;m)

2
Nl—l,Nz-l;N -m —1,N2—m2;m—H

= xq! 2™ (x)  CON+1,N,+15N =m ) ,N,=m,y+15m+1)
+ QINpaNpsNy=my =1 Np=mo+1iml oy CN, ,N, 3N, -m. ,N.-m,,m)
g ety =Wy 5Ny =
and with (p,q,r,s) = (1, m+2, 1, m+2) in (2.7), (2.18), we obtain

identity (J):

(2.20) QINysNpsNy-my ,Ny-mysml CONp*1,N,+ 13N =m ,No-m,+2;5m)
\ N - _ .
[I\I,NZ,Nl ml,N2 m2+1,m ll(x) C(N,+1,N,+1:N

g “LaByg = LeNy=my N

Q 2—m2+1;m+1)

s Ny oNgslly=my =T, Ro My ¥ sm T oy CON *1,Np+ 15N =m 1, N, =m,y+15m)

2

There are many other possible values for (p,q,r,s) which yield
Frobenius type identities from (2.7), (2.18), but each that we found
is a duplicate of one of the preceding identities. However, more
identities similar to (A)-(J) follow by elimination of common elements,
as happens in the one-dimensional (Pad¢) case.

From identities (E) and (J), we eliminate

g N 1sNgsNy=my No=my ¥1sm=1)0 oy and this leads to identity (Kj:
(2.21) QW psNpsNp=my,Ny=mysml oy C(Np*+2,N,+ 15N =m N, -m,+2;m+1)
= INpsNpsNy-mp -1, No-my+iml oy (N [F2oNp# N mm +1 N -y + 15 me )

+

Q[N1+l,NZ;Nl—ml,NZ-mZ+1;m](X) C(N1+1’N2+1;Nl_ml,N7_m7+1;m+1)

Similarly, we put Nz—l instead of N, in (2.14), identity (E), and

[V -1;N,- —m, jm= 1]

eliminate Q 1 1’ (x) from (E) and (D) to obtain

identity (L):

N - i
(2,227 qMylge0 1y Nyl iml e g CON *2,N 55N =m +1, Ny -y sme 1)

1

[Ng oy~ 13N -my Ro-ma-1imlesy  oem. +2, 80, 415N, ~in, 41 N
1 *2uly

1mmtL, 2—m2+1;m+l)

[N1+1,N 1;N,-m, ,N

g~LiNy-m, ,Ng-wysm]

+ Q (x) C(N1+],N7+1;N -m

1 1+1,N2-m2;m+1)

It may be possible, using the techniques of Padé [19] and de Bruin
[5, 6, 7 and references in 7] to show that (A)-(L) are the only
Frobenius-type identities for SPAs of two series, but we have not done
this here. Just as Frobenius identities are conveniently displayed by

*

diagrams such as {* *], so also the identities (A)-(L) should be



10

displayed in a four-dimensional figure. We show the results in two-
dimensional sections of figure 4. As an example, identity (A) connects

the elements shown in figure 3.

Ll LZ
T N
£
Nl—m]+l Nl—m2+l—- x
Nl—ml'" X Nz—mz-— #
Nl—ml—l—- + Nz_mz_l__
1 | | N M | Il 1 N
T _ T T L T 1 v M
ml—l 1y m1+l L m2~1 m, m2+l E

Fig. 3 The locations of the elements of identity (A), denoted by x
and +, in the (Ll’ Ml) and (L,, M,) planes.

The co-ordinates (Ll,Ml), (LZ,MZJ shown in Fig.3 are common to all the
identities, and so they are omitted from Fig.4 for conciseness. Fig.4
shows the relative locations of the polynomials in the Frobenius-type
identities.

We have expressed the twelve Frobenius type identities among
(2.8)-(2.22) in terms of denominator polynomials. It is well known
that they also apply to the numerator polynomial Pl(x) (from (2.3a),
by truncation) and similarly to Pz(x). Partly to emphasise this point,

we define

pINoNgsbys LMl

(2.23)  sMNi-Nasbpslgimleg oo | pINENGs Ly Losml (o

QN1 N2k basml
Identity (A) then becomes

(2.24)  sINpNgsNpmmLNp=mosml

_ u§[N1’N2;Nl_ml’NZ_mZ+l;m_l](x)

N 6X§[Nl-l,Nz—l;Nl—ml—l,Nz—mZ;m—lJ(X)



» X + + .
<+ 4
X + B
: | X+
L
X+
e X <+ -
.+ + .
x x
+
. x .
x +
x+
. -+ .
X

shown in Fig.3.

B: X
+
—— e ——
D X+
b G 2
F: T > -

>
+

L X .
-+
SR

FX 4+ e

H: 1 s
r x
e

|

ig. 4 The relative locations of the polynomials connected by the

twelve Frobenius-type identities. Detail of identity A is
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for some constants a, B, provided

(2.25) C(N -my LNy -mo+lm=1) #0,

gt s Mg "l
and similarly for the other Frobenius type identities.

We exploit the result (2.24) as a Euclidean algorithm for the
numerators of series 2. We obtain the ratio a:8 from the leading
coefficients of the polynomials on the right-hand side, and use it for
[N o Ny 5Ny =y o Np=mosmle ey

We use a prime to denote the interchange fl <> f, in an identity, and

the construction of the other two polynomials in S

present an algorithm based on repecated use of the identities A, E', E;
A*, C', C.

THE KNIGHT'S MOVE ALGORITHM The name of this algorithm describes

the way in which the coefficients of the polynomials are transferred in

the construction. We use the notation

(2.26) m ' = S[Nl’NZ;ll’lz;m](x)

to display the construction process in Fig.5. This quantity is well-

defined when
(2.27) 0<%, <N, , 0 < iz < N2
and

(2.28) m = (N1 - ll) + (NZ - ﬁz).
The purpose of the algorithm is to compute the coefficients in the

numerator and denominator polynomials of SlNl’NZ;Ll’LZ;M](x).

Initialisation We assume that S[Nl’NZ;Ll’LZ;M](x) is well defined

in the sense of (2.27), (2.28). We order the functions fl(x), fz(x)

so that
(2.29) N1 - L1 > N2 - L2

thereby arranging that the lesser degree reduction (by u) is assigned

to the second series. The degree reduction needed is
(2.30) W= N, - L,

We also define



