Maura Cerioli (Ed.)

Fundamental Approaches
to Software Engineering

8th International Conference, FASE 2005

g - Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005
Edinburgh, UK, April 2005, Proceedings

LNCS 3442 .

@ Springer

Maura Cerioli (Ed.)

Fundamental Approaches
to Software Engineering

8th International Conference, FASE 2005

Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005
Edinburgh, UK, April 4-8, 2005

Proceedings

LI

E200500937

@ Springer

Volume Editor

Maura Cerioli

Universita di Genova, DISI

Via Dodecaneso 35, 16146 Genova, Italy
E-mail: cerioli @disi.unige.it

Library of Congress Control Number: 2005922879

CR Subject Classification (1998): D.2, E3, D.3

ISSN 0302-9743
ISBN-10 3-540-25420-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25420-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11405955 06/3142 543210

Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with

— European Association for Theoretical Computer Science (EATCS);
— European Association for Programming Languages and Systems (EAPLS);
— European Association of Software Science and Technology (EASST).

The organizing team comprised:
— Chair: Don Sannella
— Publicity: David Aspinall
— Satellite Events: Massimo Felici

VI Foreword

— Secretariat: Dyane Goodchild

— Local Arrangements: Monika-Jeannette Lekuse
— Tutorials: Alberto Momigliano

— Finances: lan Stark

— Website: Jennifer Tenzer, Daniel Winterstein
— Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and
Reykjavik), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri (Bologna),
Reiko Heckel (Paderborn), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Kim Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Mon-
tanari (Pisa), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel
Wermelinger (Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller
(Saarbriicken), Lenore Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair

Preface

The conference on Fundamental Approaches to Software Engineering (FASE)
is one of the European Joint Conferences on Theory and Practice of Software
(ETAPS). As such, it provides a common forum for practitioners and researchers
to discuss theories for supporting and improving software engineering practices
and their practical application in real contexts.

Contributions were sought targeting both pragmatic concepts and their for-
mal foundations which could lead to new engineering practices and a higher level
of reliability, robustness, and evolvability of heterogeneous software federations.

The record submission of 99 research papers and 6 tool demos was the re-
sponse of the scientific community, with contributions ranging from theoretical
aspects, such as graph grammars, graph transformation, agent theory and al-
gebraic specification languages, to applications to industrially used languages,
methods, technologies, and tools, including UML, Web services, product lines,
component-based development, Java, and Java cards.

The scientific program was complemented by the invited lectures of Gérard
Berry on Esterel v7: from Verified Formal Specification to Efficient Industrial
Designs and of Thomas A. Henzinger on Checking Memory Safety with Blast.

The authors of the submissions were from 29 countries, both within Europe
(Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Lux-
embourg, Macedonia, Portugal, Spain, Sweden, Switzerland, The Netherlands,
United Kingdom) and outside (Australia, Brazil, Canada, China, India, Japan,
Korea, Pakistan, Russia, Thailand, Tunisia, Turkey, USA). It is a pleasure to
note the increasing number of submissions from eastern Europe and from outside
Europe altogether, showing that FASE is gaining importance as a world-wide
conference.

The help of the Program Committee was invaluable in selecting just 25 papers
(3 of them tool demos) from the large number of high-quality submissions, and
I take the opportunity to thank warmly all its members and the other referees
for supporting the selection process with their precious time.

FASE 2005 was held in Edinburgh, hosted and organized by the School of
Informatics of the University of Edinburgh. Next year FASE will take place in
Vienna (Austria).

Being part of ETAPS, FASE shares the sponsoring and support described by
the ETAPS Chair in the Foreword. Heartfelt thanks are also due to José Fiadeiro
and Perdita Stevens for their great efforts in the global ETAPS organization and
to Don Sannella and his staff for the wonderful job as local organizers.

Finally, a special thanks to the contributors to and participants of FASE,
who in the end are the people making the conference worthwhile.

Genoa, January 2005 Maura Cerioli

Organization

Program Committee

Silvia Teresita Acufia (Universidad Auténoma de Madrid, Spain)

Leonor Barroca (Open University, UK)

Yolande Berbers (Katholieke Universiteit Leuven, Belgium)

Jean Bézivin (University of Nantes, France)

Jean-Michel Bruel (University of Pau, France)

Maura Cerioli (Universita di Genova, Italy)

Marsha Chechik (University of Toronto, Canada)

Gianpaolo Cugola (Politecnico di Milano, Italy)

Colin Fidge (University of Queensland, Australia)

Anthony Finkelstein (University College London, UK)

Chris George (UNU/IIST, Macao 1, China)

Martin Grole-Rhode (Fraunhofer-Institut fiir Software und
Systemtechnik, Germany)

Tomasz Janowski (University of Gdansk, Poland)

Mehdi Jazayeri (Technical University of Vienna, Austria)

Cliff Jones (University of Newcastle upon Tyne, UK)

Anténia Lopes (University of Lisbon, Portugal)

Tiziana Margaria (University of Dortmund, Germany)

Stephan Merz (INRIA Lorraine, LORIA, France)

Carlo Montangero (Universita di Pisa, Italy)

Doron Peled (University of Warwick, UK)

Ernesto Pimentel (Universidad de Malaga, Spain)

Michel Wermelinger (Universidade Nova de Lisboa, Portugal)

Roel Wieringa (University of Twente, The Netherlands)

Alexander Wolf (University of Colorado at Boulder, USA)

Reviewers

Vincenzo Ambriola Oscar Dieste
Jonathan Amir Francisco Duran
Giovanni Cignoni Rik Eshuis

Joey Coleman Pascal Fenkam
Maya Daneva Fabio Gadducci
Valeria de Castro Vincenzo Gervasi
Juan de Lara Mihaela Gheorghiu
Benet Devereux Vittoria Gianuzzi
Manuel Diaz Arie Gurfinkel

Markus Hardt

David N. Jansen
Toannis Kassios

Engin Kirda

Giovanni Lagorio
Albert Lai

José A. Macias Iglesias
Paola Magillo

Antonio Mana

X Organization

Stefan Mann
Pedro Merino
Henry Muccini
Shiva Nejati
Johann Oberleitner
José Luis Pastrana
Mbénica Pinto
Stanislav Pokraev

Andrea Polini
Claudia Pons

Lucia Rapanotti
Gianna Reggio
Arend Rensink
Matthew Rutherford
Laura Semini
Almudena Sierra

Klaas Sikkel

Judith Stafford
Bedir Tekinerdogan
Klaas Van den Berg
Pascal van Eck

Ou Wei

Elena Zucca

Lecture Notes in Computer Science 3442

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA
Friedemann Mattern
ETH Zurich, Switzerland
John C. Mitchell
Stanford University, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
University of Bern, Switzerland
C. Pandu Rangan
Indian Institute of Technology, Madras, India
Bernhard Steffen
University of Dortmund, Germany
Madhu Sudan
Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos
New York University, NY, USA
Doug Tygar
University of California, Berkeley, CA, USA
Moshe Y. Vardi
Rice University, Houston, TX, USA
Gerhard Weikum =
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lecture Notes in Computer Science

For information about Vols. 1-3339

please contact your bookseller or Springer

Vol. 3452: E. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. X1, 562
pages. 2005. (Subseries LNAI).

-

Vol. 3448: G.R. Raidl, J. Gottlieb (Eds.), Evolutionary
Computation in Combinatorial Optimization. XI, 271
pages. 2005.

Vol. 3442: M. Cerioli (Ed.), Fundamental Approaches to
Software Engineering. X111, 373 pages. 2005.
Vol. 3441: V. Sassone (Ed.), Foundations of Software Sci-

ence and Computational Structures. XVIII, 521 pages.
2005.

Vol. 3440: N. Halbwachs, L.D. Zuck (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
XVII, 588 pages. 2005.

Vol. 3436: B. Bouyssounouse, J. Sifakis (Eds.), Embedded
Systems Design. XV, 492 pages. 2005.

Vol. 3433: S. Bhalla (Ed.), Databases in Networked Infor-
mation Systems. VII, 319 pages. 2005.

Vol. 3432: M. Beigl, P. Lukowicz (Eds.), Systems Aspects
in Organic and Pervasive Computing - ARCS 2005. X,
265 pages. 2005.

Vol. 3427: G. Kotsis, O. Spaniol, Wireless Systems and
Mobility in Next Generation Internet. VIII, 249 pages.
2005.

Vol. 3423: J.L. Fiadeiro, P.D. Mosses, F. Orejas (Eds.), Re-
cent Trends in Algebraic Development Techniques. VIII,
271 pages. 2005.

Vol. 3422: R.T. Mittermeir (Ed.), From Computer Literacy
to Informatics Fundamentals. X, 203 pages. 2005.

Vol. 3421: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part Il. XXXV, 1153 pages. 2005.

Vol. 3420: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part I. XXXV, 933 pages. 2005.

Vol. 3419: B. Faltings, A. Petcu, F. Fages, F. Rossi (Eds.),
Constraint Satisfaction and Constraint Logic Program-
ming. X, 217 pages. 2005. (Subseries LNAI).

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol.3416: M. Bohlen, J. Gamper, W. Polasek, M.A. Wim-

mer (Eds.), E-Government: Towards Electronic Democ-
racy. X111, 311 pages. 2005. (Subseries LNAI).

Vol. 3415: P. Davidsson, B. Logan, K. Takadama (Eds.),
Multi-Agent and Multi-Agent-Based Simulation. X, 265
pages. 2005. (Subseries LNAI).

Vol. 3414: M. Morari, L. Thiele (Eds.), Hybrid Systems:
Computation and Control. XII, 684 pages. 2005.

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. X V1, 312 pages. 2005.

Vol. 3411: S.H. Myaeng, M. Zhou, K.-F. Wong, H.-J.
Zhang (Eds.), Information Retrieval Technology. XIII,
337 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Herndndez Aguirre,
E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
X, 127 pages. 2005.

Vol. 3408: D.E. Losada, J.M. Fernandez-Luna (Eds.), Ad-
vances in Information Retrieval. XVII, 572 pages. 2005.
Vol. 3407: Z. Liu, K. Araki (Eds.), Theoretical Aspects of
Computing - ICTAC 2004. XIV, 562 pages. 2005.

Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. X VII, 829 pages. 2005.

Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
X VI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. XI, 419 pages. 2005. (Subseries LNAI).

Vol. 3401: Z. Li, L.G. Vulkov, J. Wasniewski (Eds.), Nu-
merical Analysis and Its Applications. XIII, 630 pages.
2005.

Vol. 3399: Y. Zhang, K. Tanaka, J.X. Yu, S. Wang, M. Li
(Eds.), Web Technologies Research and Development -
APWeb 2005. XXII, 1082 pages. 2005.

Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).

Vol. 3396: R.M. van Eijk, M.-P. Huget, F. Dignum (Eds.),
Agent Communication. X, 261 pages. 2005. (Subseries
LNAI).

Vol. 3395: J. Grabowski, B. Nielsen (Eds.), Formal Ap-
proaches to Software Testing. X, 225 pages. 2005.

Vol. 3394: D. Kudenko, D. Kazakov, E. Alonso (Eds.),
Adaptive Agents and Multi-Agent Systems III. VIIL, 313
pages. 2005. (Subseries LNAI).

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.
Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3391: C. Kim (Ed.), Information Networking. XVII,
936 pages. 2005.

Vol. 3390: R. Choren, A. Garcia, C. Lucena, A. Ro-
manovsky (Eds.), Software Engineering for Multi-Agent
Systems III. XII, 291 pages. 2005.

Vol. 3389: P. Van Roy (Ed.), Multiparadigm Programming
in Mozart/OZ. XV, 329 pages. 2005.

4

.

Vol. 3388: J. Lagergren &Ed,), Comparative Genomics.
VII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web
Services and Web Process Composition. VIII, 147 pages.
52005.

Vol. 3386: S. Vaudenay (Ed.)+Public Key Cryptography -
PKC 2005. IX, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. XII, 536 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Wol. 3381: P. V3jtas, M. Bielikovd, B. Charron-Bost, O.
Sykora (Eds.), SOFSEM 2005: Theory and Practice of
Computer Science. XV, 448 pages. 2005.

Vol. 3380: C. Priami, Transactions on Computational Sys-
tems Biology . IX, 111 pages. 2005. (Subseries LNBI).

Vol. 3379: M. Hemmje, C. Niederee, T. Risse (Eds.), From
Integrated Publication and Information Systems to Infor-
mation and Knowledge Environments. XXIV, 321 pages.
2005.

Vol. 3378: J. Kilian (Ed.), Theory of Cryptography. XII,
621 pages. 2005.

Vol. 3377: B. Goethals, A. Siebes (Eds.), Knowledge Dis-
covery in Inductive Databases. VII, 190 pages. 2005.
Vol. 3376: A. Menezes (Ed.), Topics in Cryptology — CT-
‘RSA 2005. X, 385 pages. 2005.

Vol. 3375: M.A. Marsan, G. Bianchi, M. Listanti, M. Meo
(Eds.), Quality of Service in Multiservice IP Networks.
X111, 656 pages. 2005.

Vol. 3374: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems. X, 279 pages.
2005. (Subseries LNAI).

Vol. 3372: C. Bussler, V. Tannen, 1. Fundulaki (Eds.), Se-
mantic Web and Databases. X, 227 pages. 2005.

¥ol. 3371: M.W. Barley, N. Kasabov (Eds.), Intelligent
Agents and Multi-Agent Systems. X, 329 pages. 2005.
(Subseries LNAI).

“Vol. 3370: A. Konagaya, K. Satou (Eds.), Grid Computing

in Life Science. X, 188 pages. 2005. (Subseries LNBI).

Vol. 3369: V.R. Benjamins, P. Casanovas, J. Breuker, A.
Gangemi (Eds.), Law and the Semantic Web. XII, 249
pages. 2005. (Subseries LNAI).

Vol. 3368: L. Paletta, J.LK. Tsotsos, E. Rome, G.W.
Humphreys (Eds.), Attention and Performance in Com-
putational Vision. VIII, 231 pages. 2005.

Vol. 3367: W.S. Ng, B.C. Ooi, A. Ouksel, C. Sartori (Eds.),
Databases, Information Systems, and Peer-to-Peer Com-
puting. X, 231 pages. 2005.

Vol. 3366: I. Rahwan, P. Moraitis, C. Reed (Eds.), Argu-
mentation in Multi-Agent Systems. XII, 263 pages. 2005.
(Subseries LNAI).

Vol. 3365: G. Mauri, G. Pidun, M.J. Pérez-Jiménez, G.
Rozenberg, A. Salomaa (Eds.), Membrane Computing.
IX, 415 pages. 2005.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. X1, 413 pages. 2004.

Vol. 3362: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
T. Muntean (Eds.), Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. IX, 257 pages.
2005.

Vol. 3361: S. Bengio, H. Bourlard (Eds.), Machine Learn-
ing for Multimodal Interaction. XII, 362 pages. 2005.

Vol. 3360: S. Spaccapietra, E. Bertino, S. Jajodia, R. King,
D. McLeod, M.E. Orlowska, L. Strous (Eds.), Journal on
Data Semantics II. XI, 223 pages. 2005.

Vol. 3359: G. Grieser, Y. Tanaka (Eds.), Intuitive Human
Interfaces for Organizing and Accessing Intellectual As-
sets. X1V, 257 pages. 2005. (Subseries LI‘\IAI).

Vol. 3358: J. Cao, L.T. Yang, M. Guo, F. Lau (Eds.), Par-

allel and Distributed Processing and Applications. XXIV,
1058 pages. 2004.

Vol. 3357: H. Handschuh, M.A. Hasan (Eds.), Selected
Areas in Cryptography. XI, 354 pages. 2004.

Vol. 3356: G. Das, V.P. Gulati (Eds.), Intelligent Informa-
tion Technology. XII, 428 pages. 2004.

Vol. 3355: R. Murray-Smith, R. Shorten (Eds.), Switching
and Learning in Feedback Systems. X, 343 pages. 2005.
Vol. 3354: M. Margenstern (Ed.), Machines, Computa-
tions, and Universality. VIII, 329 pages. 2005.

Vol. 3353: J. Hromkovi&, M. Nagl, B. Westfechtel (Eds.),
Graph-Theoretic Concepts in Computer Science. XI, 404
pages. 2004.

Vol. 3352: C. Blundo, S. Cimato (Eds.), Security in Com-
munication Networks. X1, 381 pages. 2005.

Vol. 3351: G. Persiano, R. Solis-Oba (Eds.), Approxima-
tion and Online Algorithms. VIII, 295 pages. 2005.

Vol. 3350: M. Hermenegildo, D. Cabeza (Eds.), Practical
Aspects of Declarative Languages. VIII, 269 pages. 2005.
Vol. 3349: B.M. Chapman (Ed.), Shared Memory Parallel
Programming with Open MP. X, 149 pages. 2005.

Vol. 3348: A. Canteaut, K. Viswanathan (Eds.), Progress in
Cryptology - INDOCRYPT 2004. X1V, 431 pages. 2004.
Vol. 3347: R.K. Ghosh, H. Mohanty (Eds.), Distributed

Computing and Internet Technology. XX, 472 pages.
2004.

Vol. 3346: R.H. Bordini, M. Dastani, J. Dix, A.E.F.
Seghrouchni (Eds.), Programming Multi-Agent Systems.
XIV, 249 pages. 2005. (Subseries LNAI).

Vol. 3345:Y. Cai (Ed.), Ambient Intelligence for Scientific
Discovery. XII, 311 pages. 2005. (Subseries LNAI).

Vol. 3344: J. Malenfant, B.M. @stvold (Eds.), Object-
Oriented Technology. ECOOP 2004 Workshop Reader.
VIII, 215 pages. 2005.

Vol. 3343: C. Freksa, M. Knauff, B. Krieg-Briickner, B.
Nebel, T. Barkowsky (Eds.), Spatial Cognition IV. Rea-
soning, Action, and Interaction. XIII, 519 pages. 2005.
(Subseries LNAI).

Vol. 3342: E. Sahin, W.M. Spears (Eds.), Swarm Robotics.
IX, 175 pages. 2005.

Vol. 3341: R. Fleischer, G. Trippen (Eds.), Algorithms and
Computation. XVII, 935 pages. 2004.

Vol. 3340: C.S. Calude, E. Calude, M.J. Dinneen (Eds.),
Developments in Language Theory. XI, 431 pages. 2004.

Table of Contents

Invited Contributions

Esterel v7: From Verified Formal Specification to Efficient Industrial
Designs

GETard BeTTy . . oot

Checking Memory Safety with Blast
Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar. . .

‘Web Services

Analyzing Web Service Based Business Processes
Azel Martens

Automatic Conformance Testing of Web Services
Reiko Heckel, Leonardo Marianic..ccciuiuuunno...

Graph Grammars and Graph Transformations

Termination Criteria for Model Transformation
Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer,
Daniel Varrd, Szilvia Varré-Gyapaycccccii.i..

Ensuring Structural Constraints in Graph-Based Models with Type
Inheritance
Gabriele Taentzer, Arend Rensink.......cccciiuio...

Modelling Parametric Contracts and the State Space of Composite
Components by Graph Grammars
Ralf H. Reussner, Jens Happe, Annegret Habel.....................

Components

Improving the Build Architecture of Legacy C/C++ Software Systems
Homayoun Dayani-Fard, Yijun Yu, John Mylopoulos,
Periklis Andritsos

XII Table of Contents

Using Scenarios to Predict the Reliability of Concurrent
Component-Based Software Systems
Genaina Rodrigues, David Rosenblum, Sebastian Uchitel 111

Augmenting UML Models for Composition Conflict Analysis
Andreas Leicher, Jorn Guy SUBviveiveivinisinsneasanenssnss 127

A Tool to Automate Component Clustering and Identification
Soo Ho Chang, Man Jib Han, Soo Dong Kim 141

Product Lines

Managing Variability Using Heterogeneous Feature Variation Patterns
Imed Hammouda, Juha Hautamdiki, Mika Pussinen, Kai Koskimies .. 145

Color-Blind Specifications for Transformations of Reactive Synchronous

Programs
Kim G. Larsen, Ulrik Larsen, Andrzej Wasowski 160

Theory

On the Correspondence Between Conformance Testing and Regular
Inference
Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker,
Harald Raffelt, Bernhard Steffen ccciiiiuon... 175

Observational Purity and Encapsulation
David A. Naumann 190

Towards a Theory on the Role of Ontologies in Software Engineering
Problem Solving
José M. Canete, Francisco J. Galdn 205

Code Understanding and Validation

A Framework for Counterexample Generation and Exploration
Marsha Chechik, Arie Gurfinkel 220

Using Annotations to Check Structural Properties of Classes
Michael Eichberg, Thorsten Schéfer, Mira Mezini 237

Improving System Understanding via Interactive, Tailorable, Source
Code Analysis
Vladimir Jakobac, Alexander Egyed, Nenad Medvidovic 253

Table of Contents XIII

Kaveri: Delivering the Indus Java Program Slicer to Eclipse
Ganeshan Jayaraman, Venkatesh Prasad Ranganath, John Hatcliff ... 269

The UML

Non-local Choice and Beyond: Intricacies of MSC Choice Nodes
Arjan J. Mooij, Nicolae Goga, Judi M.T. Romijn 273

Coverage Criteria for Testing of Object Interactions in Sequence
Diagrams
Atanas Rountev, Scott Kagan, Jason Sawin 289

Tools for Secure Systems Development with UML: Security Analysis
with ATPs
Jan Jirjens, Pasha Shabalin i, 305

Maintaining Life Perspectives During the Refinement of UML Class

Structures
Alexander Egyed, Wuwei Shen, Kun Wang 310

Automatic Proofs and Provers

Automated Compositional Proofs for Real-Time Systems
Carlo A. Furia, Matteo Rossi, Dino Mandrioli, Angelo Morzenti 326

Iterative Circular Coinduction for COCASL in Isabelle/HOL
Daniel Hausmann, Till Mossakowski, Lutz Schroder 341

Formalisation and Verification of JAvA CARD Security Properties in

Dynamic Logic
Wojciech Mostowski 357

Author Index 373

Esterel v7: From Verified Formal Specification to
Efficient Industrial Designs

Gérard Berry

Chief Scientist, Esterel Technologies Member, Academie des Sciences

Synchronous languages were developed in the mid-80’s specifically to deal with
embedded systems. They are based on mathematical semantics and support for-
mal compilation to classical software or hardware languages as well as formal
verification. Esterel v7 is a major industrial evolution of the original Esterel
synchronous language, mostly directed to complex hardware applications. The
language is supported by the Esterel Studio integrated development environ-
ment, which provides a smooth path from verifiable executable specification to
efficient circuit synthesis. The graphical Safe States Machines derived from Es-
terel are also used in the SCADE tool which is widely used for safety-critical
software applications in avionics.

Through the examples of Esterel v7 and SCADE, we discuss the impact
and evolution of formal methods for actual industrial design. In particular, we
discuss some issues that are central for actual applications but are usually either
not considered as such or viewed as too difficult to handle in research or R&D
projects. We demonstrate that the difference between industrial success and
failure often lies in precisely these aspects.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, p. 1, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Checking Memory Safety with Blast*

Dirk Beyer!, Thomas A. Henzinger!'2, Ranjit Jhala3,
and Rupak Majumdar*

1 EPFL, Switzerland
2 University of California, Berkeley
3 University of California, San Diego
4 University of California, Los Angeles

Abstract. BLAST is an automatic verification tool for checking tempo-
ral safety properties of C programs. Given a C program and a temporal
safety property, BLAST statically proves that either the program sat-
isfies the safety property or the program has an execution trace that
exhibits a violation of the property. BLAST constructs, explores, and re-
fines abstractions of the program state space based on lazy predicate
abstraction and interpolation-based predicate discovery. We show how
BLAST can be used to statically prove memory safety for C programs.
We take a two-step approach. First, we use CCURED, a type-based mem-
ory safety analyzer, to annotate with run-time checks all program points
that cannot be proved memory safe by the type system. Second, we use
BLAST to remove as many of the run-time checks as possible (by proving
that these checks never fail), and to generate for the remaining run-time
checks execution traces that witness them fail. Our experience shows
that BLAST can remove many of the run-time checks added by CCURED
and provide useful information to the programmer about many of the
remaining checks.

1 Introduction

Invalid memory access is a major source of program failures. If a program state-
ment dereferences a pointer that points to an invalid memory cell, the program
is either aborted by the operating system or, often worse, the program con-
tinues to run with an undefined behavior. To avoid the latter, one can perform
checks before every memory access at run time. For some programming languages
(e.g., Java) this is done automatically by the compiler/run-time environment.
For the language C, neither the compiler nor the run-time environment enforces
memory-safety policies. CCURED [7,24] is a program-transformation tool for C
which transforms any given C program to a memory-safe version. CCURED uses
a type-based program analysis to prove as many memory accesses as possible

* This research was supported in part by the NSF grants CCR-0234690, CCR-0225610,
and I'TR-0326577.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 2-18, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Checking Memory Safety with Blast 3

memory safe, and it inserts run-time checks before the remaining memory ac-
cesses. The resulting, “cured” C program is memory safe in the sense that it
alarms the user if the program was about to execute an unsafe operation. De-
spite the manyfold advantages of this approach, it has two drawbacks: first, the
run-time checks consume additional processor time, and second, the checks give
late feedback, just before the program aborts.

We address these two points by combining CCURED with a more powerful,
path-sensitive program analysis. The additional analysis is performed by the
model checker BLAST [19]. For each memory access that the type-based analysis
of CCURED fails to prove safe, we invoke the more precise, more expensive anal-
ysis of BLAST. There are three possible outcomes. First, BLAST may be able to
prove that the memory access is safe (even though CCURED was not able to prove
this). In this case, no run-time check needs to be inserted, thus reducing the over-
head in the cured program. Second, BLAST may be able to generate an execution
trace to an invalid pointer dereference at the considered control location, i.e., an
execution trace along which the run-time check inserted by CCURED would fail.
This may expose a program bug, which can, based on the error trace provided
by BLAST, then be fixed by the programmer. Third, BLAST may time-out at-
tempting to check whether or not a given memory access is always safe. In this
case, the run-time check inserted by CCURED remains in the cured program. It is
important to note that BLAST, even though often more powerful than CCURED,
is not invoked by itself, but only after a type-based pointer analysis fails. This is
because where successful, the CCURED analysis is more efficient, and it may also
succeed in cases that overwhelm the model checker. However, the combination
of CCURED and BLAST guarantees memory-safe programs with less run-time
overhead than the use of CCURED alone, and it provides useful compile-time
feedback about memory-safety violations to the programmer.

BLAST performs an abstract reachability analysis to check if a given error
location of a C program can be visited during program execution. All paths
of the program are checked symbolically and abstractly, by tracking only some
relevant facts (called predicates) about program variables, instead of the full pro-
gram state. If a path to the error location is found, the path may be due to the
imprecision in the abstraction (a so-called spurious counterexample) or it may
correspond to a feasible program path (a genuine counterexample). In the former
case, additional relevant predicates are discovered automatically to remove the
spurious error trace. The process is repeated, by tracking an increasing number
of predicates, until either a genuine error trace (program bug) is found, or the
abstraction is precise enough to prove the absence of error traces. This scheme of
counterexample-guided predicate abstraction refinement was first implemented
for verifying software by the SLAM project [3]. BLAST improves on the general
scheme in two main ways. First, relevant predicates are discovered locally and
independently at each program location as interpolants between the past and
the future fragments of a spurious error trace [15]. Second, the discovered new
predicates are added and tracked locally only in those parts of an abstract reach-
ability tree where the spurious error trace occurred (lazy abstraction) [18]. This

