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Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with

— European Association for Theoretical Computer Science (EATCS);
— European Association for Programming Languages and Systems (EAPLS);
— European Association of Software Science and Technology (EASST).

The organizing team comprised:
— Chair: Don Sannella
— Publicity: David Aspinall
— Satellite Events: Massimo Felici
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— Secretariat: Dyane Goodchild

— Local Arrangements: Monika-Jeannette Lekuse
— Tutorials: Alberto Momigliano

— Finances: lan Stark

— Website: Jennifer Tenzer, Daniel Winterstein
— Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and
Reykjavik), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri (Bologna),
Reiko Heckel (Paderborn), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Kim Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Mon-
tanari (Pisa), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel
Wermelinger (Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller
(Saarbriicken), Lenore Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair



Preface

The conference on Fundamental Approaches to Software Engineering (FASE)
is one of the European Joint Conferences on Theory and Practice of Software
(ETAPS). As such, it provides a common forum for practitioners and researchers
to discuss theories for supporting and improving software engineering practices
and their practical application in real contexts.

Contributions were sought targeting both pragmatic concepts and their for-
mal foundations which could lead to new engineering practices and a higher level
of reliability, robustness, and evolvability of heterogeneous software federations.

The record submission of 99 research papers and 6 tool demos was the re-
sponse of the scientific community, with contributions ranging from theoretical
aspects, such as graph grammars, graph transformation, agent theory and al-
gebraic specification languages, to applications to industrially used languages,
methods, technologies, and tools, including UML, Web services, product lines,
component-based development, Java, and Java cards.

The scientific program was complemented by the invited lectures of Gérard
Berry on Esterel v7: from Verified Formal Specification to Efficient Industrial
Designs and of Thomas A. Henzinger on Checking Memory Safety with Blast.

The authors of the submissions were from 29 countries, both within Europe
(Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Lux-
embourg, Macedonia, Portugal, Spain, Sweden, Switzerland, The Netherlands,
United Kingdom) and outside (Australia, Brazil, Canada, China, India, Japan,
Korea, Pakistan, Russia, Thailand, Tunisia, Turkey, USA). It is a pleasure to
note the increasing number of submissions from eastern Europe and from outside
Europe altogether, showing that FASE is gaining importance as a world-wide
conference.

The help of the Program Committee was invaluable in selecting just 25 papers
(3 of them tool demos) from the large number of high-quality submissions, and
I take the opportunity to thank warmly all its members and the other referees
for supporting the selection process with their precious time.

FASE 2005 was held in Edinburgh, hosted and organized by the School of
Informatics of the University of Edinburgh. Next year FASE will take place in
Vienna (Austria).

Being part of ETAPS, FASE shares the sponsoring and support described by
the ETAPS Chair in the Foreword. Heartfelt thanks are also due to José Fiadeiro
and Perdita Stevens for their great efforts in the global ETAPS organization and
to Don Sannella and his staff for the wonderful job as local organizers.

Finally, a special thanks to the contributors to and participants of FASE,
who in the end are the people making the conference worthwhile.

Genoa, January 2005 Maura Cerioli
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Esterel v7: From Verified Formal Specification to
Efficient Industrial Designs

Gérard Berry

Chief Scientist, Esterel Technologies Member, Academie des Sciences

Synchronous languages were developed in the mid-80’s specifically to deal with
embedded systems. They are based on mathematical semantics and support for-
mal compilation to classical software or hardware languages as well as formal
verification. Esterel v7 is a major industrial evolution of the original Esterel
synchronous language, mostly directed to complex hardware applications. The
language is supported by the Esterel Studio integrated development environ-
ment, which provides a smooth path from verifiable executable specification to
efficient circuit synthesis. The graphical Safe States Machines derived from Es-
terel are also used in the SCADE tool which is widely used for safety-critical
software applications in avionics.

Through the examples of Esterel v7 and SCADE, we discuss the impact
and evolution of formal methods for actual industrial design. In particular, we
discuss some issues that are central for actual applications but are usually either
not considered as such or viewed as too difficult to handle in research or R&D
projects. We demonstrate that the difference between industrial success and
failure often lies in precisely these aspects.
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Abstract. BLAST is an automatic verification tool for checking tempo-
ral safety properties of C programs. Given a C program and a temporal
safety property, BLAST statically proves that either the program sat-
isfies the safety property or the program has an execution trace that
exhibits a violation of the property. BLAST constructs, explores, and re-
fines abstractions of the program state space based on lazy predicate
abstraction and interpolation-based predicate discovery. We show how
BLAST can be used to statically prove memory safety for C programs.
We take a two-step approach. First, we use CCURED, a type-based mem-
ory safety analyzer, to annotate with run-time checks all program points
that cannot be proved memory safe by the type system. Second, we use
BLAST to remove as many of the run-time checks as possible (by proving
that these checks never fail), and to generate for the remaining run-time
checks execution traces that witness them fail. Our experience shows
that BLAST can remove many of the run-time checks added by CCURED
and provide useful information to the programmer about many of the
remaining checks.

1 Introduction

Invalid memory access is a major source of program failures. If a program state-
ment dereferences a pointer that points to an invalid memory cell, the program
is either aborted by the operating system or, often worse, the program con-
tinues to run with an undefined behavior. To avoid the latter, one can perform
checks before every memory access at run time. For some programming languages
(e.g., Java) this is done automatically by the compiler/run-time environment.
For the language C, neither the compiler nor the run-time environment enforces
memory-safety policies. CCURED [7,24] is a program-transformation tool for C
which transforms any given C program to a memory-safe version. CCURED uses
a type-based program analysis to prove as many memory accesses as possible

* This research was supported in part by the NSF grants CCR-0234690, CCR-0225610,
and I'TR-0326577.
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memory safe, and it inserts run-time checks before the remaining memory ac-
cesses. The resulting, “cured” C program is memory safe in the sense that it
alarms the user if the program was about to execute an unsafe operation. De-
spite the manyfold advantages of this approach, it has two drawbacks: first, the
run-time checks consume additional processor time, and second, the checks give
late feedback, just before the program aborts.

We address these two points by combining CCURED with a more powerful,
path-sensitive program analysis. The additional analysis is performed by the
model checker BLAST [19]. For each memory access that the type-based analysis
of CCURED fails to prove safe, we invoke the more precise, more expensive anal-
ysis of BLAST. There are three possible outcomes. First, BLAST may be able to
prove that the memory access is safe (even though CCURED was not able to prove
this). In this case, no run-time check needs to be inserted, thus reducing the over-
head in the cured program. Second, BLAST may be able to generate an execution
trace to an invalid pointer dereference at the considered control location, i.e., an
execution trace along which the run-time check inserted by CCURED would fail.
This may expose a program bug, which can, based on the error trace provided
by BLAST, then be fixed by the programmer. Third, BLAST may time-out at-
tempting to check whether or not a given memory access is always safe. In this
case, the run-time check inserted by CCURED remains in the cured program. It is
important to note that BLAST, even though often more powerful than CCURED,
is not invoked by itself, but only after a type-based pointer analysis fails. This is
because where successful, the CCURED analysis is more efficient, and it may also
succeed in cases that overwhelm the model checker. However, the combination
of CCURED and BLAST guarantees memory-safe programs with less run-time
overhead than the use of CCURED alone, and it provides useful compile-time
feedback about memory-safety violations to the programmer.

BLAST performs an abstract reachability analysis to check if a given error
location of a C program can be visited during program execution. All paths
of the program are checked symbolically and abstractly, by tracking only some
relevant facts (called predicates) about program variables, instead of the full pro-
gram state. If a path to the error location is found, the path may be due to the
imprecision in the abstraction (a so-called spurious counterexample) or it may
correspond to a feasible program path (a genuine counterexample). In the former
case, additional relevant predicates are discovered automatically to remove the
spurious error trace. The process is repeated, by tracking an increasing number
of predicates, until either a genuine error trace (program bug) is found, or the
abstraction is precise enough to prove the absence of error traces. This scheme of
counterexample-guided predicate abstraction refinement was first implemented
for verifying software by the SLAM project [3]. BLAST improves on the general
scheme in two main ways. First, relevant predicates are discovered locally and
independently at each program location as interpolants between the past and
the future fragments of a spurious error trace [15]. Second, the discovered new
predicates are added and tracked locally only in those parts of an abstract reach-
ability tree where the spurious error trace occurred (lazy abstraction) [18]. This



