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Preface

Computers play an increasingly important role in many of today’s activities,
and correspondingly physicists find employment after graduation in computer-
related jobs, often quite remote from their physics education. The present
lectures, on the other hand, emphasize how we can use computers for the
purposes of fundamental research in physics.

Thus we do not deal with programs designed for newspapers, banks, or
travel agencies, i.e., word processing and storage of large amounts of data.
Instead, our lectures concentrate on physics problems, where the computer
often has to work quite hard to get a result. Our programs are necessarily
quite short, excluding for example quantum chemistry programs with 10°
program lines. The reader will learn how to handle computers for well-defined
purposes. Therefore, in the end, this course will also enable him to orient

himself in computer-related jobs.

The first chapter deals mainly with solutions of the Newtonian equation
of motion, that force equals mass times acceleration, which is a precursor
to the molecular dynamics method in statistical physics. The second chap-
ter considers, by means of several examples, another method for statistical
physics, Monte Carlo simulation. These two chapters deal with numbers, the
traditional territory of computers. In contrast, analytic formula manipulation,
such as (a+270% —4c)® = a®+135a%6% — ... | is taught in the last chapter and
is important, for instance, in analytic integration or for evaluating expressions
in Einstein’s general theory of relativity.

All chapters try to convince readers to write their own computer programs
for their own needs; it is not our aim that the reader buys software that
requires the typing of only a few numbers before the results are produced,
since then the students will only be amazed at the competence of the authors.
Our aim is to teach them to program at least as well by themselves.

We have taught this course at various universities: repeatedly in Cologne,
but also in Minneapolis and Antigonish. Prospective readers should have ac-
cess to a computer (micro, mainframe, ...) to run their programs, either in
batch or in interactive mode. For the first two sections, they should have about
2 years of university physics education whereas the computer algebra course
can be understood by any freshman. The languages used here are Fortran, for
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number crunching, and Reduce, for analytic formula manipulation. Reduce is
explained here in detail, and Fortran (summarized in an appendix) can be
easily understood even if the reader knows only Basic or Pascal. Numerous
high school students, who had never attended a university course, were able
to write programs for parts of this course.

The authors come from different backgrounds (nuclear physics, solid state
physics, and relativity) and have different programming styles: STRENGTH
THROUGH DIVERSITY. Each author agrees, however, that the reader should
not trust the advice of the other authors. We thank D. Cremer, C. Hoense-
laers, T. Pfenning and W. Weiss for their help in the course and H. Quevedo
for TEX-assistance. The Eden clusters in the cover picture were produced by

R. Hirsch.

Cologne, April 1988 D. Stauffer, F.W. Hehl
V. Winkelmann, J.G. Zabolitzky
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1. Computational Methods in Classical Physics

John G. Zabolitzky, KONTRON Electronics, 8057 Eching, West Germany

1.1 Preface

It is the aim of this chapter to enable the readers to implement solutions to problems in the
physical sciences with a computer program, and carry out the ensuing computer studies.
They will therefore be shown a few basic numerical methods, and the general spirit for
mapping physics problems onto a computational algorithm. It is advisable to spend some
time actually implementing the exercises proposed, since is only by so doing that one may
learn about, and get a feel for, the spirit of scientific computing. Examples are given using
the FORTRAN 77 language and the UNIX operating system. The graphics interface used
is that of the SUN workstation.

1.2 Motion of a Classical Point—Like Particle

The first few examples will deal with problems in classical Newtonian mechanics, in partic-
ular with the motion of a single classical point-like particle, described by Newton’s law,

F =ma (Force = mass * acceleration). (1)

F and a may be taken to have the dimensions of the system under consideration, i.e., if
the particle is moving in three-dimensional space, F' and a will be three—vectors, and the
particle coordinates are labelled r . The derivatives of these coordinates with respect to
time are

velocity: vi= j—: ; (2)
acceleration: a= ﬁ = d_v 3
’ Tdtr T dt (3)

The force F of (1) is the total force acting on the particle, that is the (vector) sum of all
individual forces acting on the particle. Some examples of such individual forces are

constant gravitational field F=mg, (4)
general gravitational field F=V®(ry,), (5)
potential & = o M ; (6)

T12
friction F=k (ﬁ) v® | ©)

In (7) k is some suitable constant, the expression in parentheses is a unit vector in the
direction opposite to the current velocity, and v = |v| = |v| is the magnitude of the velocity.
The exponent « can take on a number of values depending upon the type of friction involved.



Equation (7) is not an exact model since the exponent should really depend on the velocity
as well, though this is not considered here as the deviation is small.

Example. Let us consider the movement of a particle in constant gravitational field, (4).
Using (4) in Newton’s law, (1), yields

mg = ma or g=a, (8)
which may not be too surprising. As a differential equation, (8) becomes

2 2 a5
%{;‘_:g or %t—:;/=—y’ %=0’ (9)
where the coordinate vector r = (y,z) has been written using its two components y (eleva-
tion) and z (horizontal position).

We have now reduced the (physics) problem of calculating the motion of a point-like
particle to the (mathematical) problem of solving a differential equation. In all generality,
(1) may be considered as relating a known function, the force given in terms of position,
velocity, acceleration etc., to the acceleration (or second derivative of the coordinate). So
the general form of (1) is

d’r

dt?
This equation does not specify the path, i.e. the function r(¢), uniquely. This is because we
have not specified any initial conditions, or end conditions, or boundary conditions. So far
we have only specified a family of functions ( = set of all solutions of (10) for specfic F).
We need to find the number of parameters required to select one unique solution out of this
set. Formally integrating (10) twice,

= %F(r, Vy san)s (10)

t

r(t) = /v(-r)d-r +r (11)

wilr) = % / F(r')dr' +vo (12)

To

it is seen that we need two constant vectors, ry and vy, to specify the solution completely,
that is, initial position and initial velocity of the particle. In two dimensions, these would
be four numbers, in three dimensions six. Equivalently, one could ask: What is the path
terminating at a given velocity and position?, i.e, integrate backwards in time; or one could
ask: What is the path passing through ry at ¢ = 0 and through r; at ¢ = ¢; ? This latter
problem would be a boundary value problem (instead of solution and first derivative given
at one point, solution given at two different points) and will be discussed in part 4 of this
chapter.

Example. Continuing the above example, the solution — carrying out integrations (11)
and (12) - is simple since the motion in the z and y directions is independent. The two
differential equations of second order for the two scalar coordinates are [(9)]

Fy d’z

P @ =" (3)



After the first integration we have

dy dz
i vy(t) = —gt + vy(0); F vz(t) = v,(0), (14)
with the initial conditions v,(0) and v,(0) defining the velocity vector at time ¢ = 0. The

second integration yields
y(t) = =58 +v, (0t +y(0);  (t) = v (0}t + =(0). (15)

In (15) we have the complete solution, given the four initial conditions
z(0), y(0), v5(0), vy(0). Here we have of course recovered the well-known fact that n
differential equations of order m need n * m initial conditions to have a unique solution.

In the general case (10) will not have a closed—form solution which could be derived
by analytical means. Let us therefore consider numerical solution to (10). As before, I will
substitute the velocities as additional variables, which yield a system of (in general coupled)
differential equations of the first order:

dr dv 1

'Zt— = and E = ;F(!‘,V, ). (16)
For simplicity, first consider just a single equation, y' = f(¢,y), where the prime is shorthand
for d/dt. Given y at some %, , we want to find y(2) a little time later, at ¢ = ¢, + A¢. That is,
we break the problem we want to solve (find complete path, i.e. function y(t)) into a number
of smaller, less difficult problems: find just a little piece of the path. Furthermore, we do
not require to know the path at all arbitrary points, but we ask only for the coordinates at a
few selected, discrete points in time. This is the first and essential task in order to make any
problem tractable numerically: we have to discretize the variables involved in the problem,
here the time ¢. The time ¢ will not run over a continuum of real values, but assume only
values out of a given, finite set . In our case this set will be a one-dimensional mesh of time
points, {t|t =t +iAt, i=0,1,2,...,maz. }. By repeatedly stepping the current solution
through one time interval A¢ we may proceed to any finite time desired.

Given y at to (that is, numbers given for these quantities), we can evaluate the function
f(t,y) = y' to find the value of y' at that point. We are now left with the task to extrapolate
from our current knowledge about the function y(t) to find the value y(to + At). Since y(t)
is the solution of a differential equation that is assumed to exist, we can also assume that
y(t) possesses a Taylor expansion around ¢ = %, i.e.,

y(t) = Y(to) + ¥/ (t0)(t — to) + 54" (f0)(t — t0)? + .. (a7

If the time step is made small enough (if Az = ¢ — £, is small enough) the second and all
higher derivative terms in (17) may be neglected. In other words, in a sufficiently small
neighbourhood any function may arbitrarily well be approximated by a linear function and
in that case we have all the knowledge to calculate y(to + At):

Y(to + At) = y(to) + ¥'(t0)At. (18)

This method is called the linear extrapolation or Euler method. It is quite obvious that for
a finite time step At? errors of the order At? are generated: the numerical treatment will not



produce an exact solution, but the true solution may be approximated as well as one likes by
making At small enough. This shows a general feature of numerical methods: the higher the
accuracy desired of the results, the more computational work is required, since with smaller
time steps At a larger number of steps are necessary to traverse a given time interval. The
Euler stepping method obviously can be applied repeatedly, and we require only the initial
values in order to do the first step. Errors are generated at each step and may build up as
we go along. We know from (17) that errors are proportional to the second derivative of the
solution — essentially the curvature. So we know where to look for problems! Wherever our
final solution is to have large curvature, numerical errors may possibly have come in.

Let us now generalize the method for one function to coupled systems of differential
equations like (16). At time ¢y, all the right hand sides may be calculated from the known
function values. The function values are known either as initial values, or from the last
time step. We can therefore write down a Taylor series for each of the components of (16),
and proceed with each component independently as we did for the single equation case.
The reason is quite simple: all the couplings between the various equations are contained
exclusively within the right hand sides, and are simply computed with the known values at
the current time point. After that, the equations are really independent and their solution
does not pose any more problems than the solution of a single equation.

Algorithm: Linear Extrapolation or Euler Method. A set of ordinary differential
equations is written as

dy;(t)
dt
At an initial time ¢ = £, all function values are provided as initial values, and the function
values at time ¢ + At are calculated from
vi(t+ At =wi(t) + fi(t,y(2)) x A, i=1,..,n. (20)

The method is applied repeatedly to integrate out to large times, giving as error proportional
to the second derivative times A¢? . Two points should be noted:

= fi(t,ylayZ,"-vyn), 1' = 1"")77' . (19)

1. Higher—order ordinary differential equations may be transformed into the form of (19)
by substituting new variables for the higher derivatives, in exactly the same way as
substituting the velocity in our physical example.

2. Quite clearly this is the simplest method possible for solving differential equations.
More involved methods with higher accuracy will be discussed later.

Problem No. 1: Throw the Ball !

Consider the two-dimensional (2d) coordinate system y(up)—z(right). At the origin of this
coordinate system a ball of mass 1kg is thrown with velocity v and angle theta with respect
to ground. Gravitational acceleration is taken to be 10 m/sec? and the frictional force due
to movement in a viscous medium is given by

Ev*®7,  with k=05 kg/sec (m/sec)_o'87

Where is the ball at ¢ = 2 sec it is thrown with a velocity of 70 m/sec at an angle of 44
degrees ? (Hint: use smaller v first!) Write a subroutine to calculate the path of flight. The
subroutine is to be called with three arguments:




subroutine nstep (dt, n, y) ,
dimension y (4, n) ,

where dt is the timestep to be used and n is the number of timesteps to be taken plus one.
The array y holds initial conditions as well as the solution, so that y (all, 1) are the initial

conditions, y(all, 2) are positions and velocities after one timestep, ..., y(all, n) are positions
and velocities after (n-1) timesteps. The four components are then assigned as

y(1,t) = y-coordinate y(2,t) = x-coordinate

y(3,t) = y-velocity =y’ y(4,t) = x-velocity = x’ .

Use the linear extrapolation method to obtain the trajectory of the ball.
Input:  dt, n, y(all, 1) (corresponding to t=0)
Output: y(all, 2..n) (corresponding to t=dt,...,(n-1)*dt)

Theory.
We have Newton’s law, F = ma. Acceleration a is the second derivative of the coordinates
with respect to time, a = x". We therefore have

&x
dt?

—Tlg[—mgey — kv1¥e,),

where x is a 2d vector of current position, the left hand side is therefore the 2d acceleration
vector, m is the mass of the ball, g is the gravitational acceleration, e, is a unit vector in the y
direction, k is the constant of friction, v is the magnitude of the current velocity, and e, is the
unit vector in the direction of current velocity. The first term in brackets is the gravitational
term, the second term comes from the friction. The direction of the gravitational force is
in the negative y direction, the direction of the frictional force is opposite to that of the
velocity.

Implementation.
Using the above constants and equation, it is straightforward to write down the right hand
side of the derivative vector, ' = ..., ' = ..., y" = ..., " = ... as derivatives of y, z, ¥/, z'.

We therefore have the problem in the canonical form and can use the algorithm given above.
Collect your subroutine(s) in any file with extension .f. (e.g., myball.f). The procedure to
translate, load and execute the program is execball. You therefore type “execball myball” .

jgzh
jgzh cat execball
£77 -0 $1 .-£68881 -0 $1.f /u/jgz/cpc/scaffl.o -lcore77
-lcore -lsunwindow -lpixrect -1m
$1
jgzl
gz
Provided Scaffold for Problem # 1.

subroutine init (dt,y,tmax,nmax,n)
dimension y(4)
c
¢ this subroutine initializes the ball fly problem



¢ by obtaining user input

2 write (*,*) ’enter end-time’

read (*,*) tmax

if (tmax .le. 0.0) then
wvrite (*,*) ’illegal end-time, must be > 0’
goto 2

endif

1 write (*,*) ’enter time step’

read (*,*) dt

if (dt .le. 0.0) then
write (*,*) ’illegal time step, must be > 0’
goto 1

endif

if (dt .gt. tmax) then
write (*,*) ’illegal time step, > tmax’
goto 1

endif

n=tmax/dt+0.1+1.

c added 1 for initial t=0 storage

if (n .gt. mnmax) then
write (*,*) ’too many time steps’
goto 1

endif

3 write (*,*) ’enter velocity’
read (*,*) v
if (v .le. 0.0) then
write (*,*) ’illegal velocity, must be > 0’
goto 3
endif
4 write (*,*) ’enter angle in degrees’
read (*,*) angdeg
if (angdeg .le. 0.0 .or. angdeg .ge. 90.0) then
write (*,%) ’illegal angle, must be > O and < 90’
goto 4
endif
angrad=angdeg*3.141592654/180.0

y(1)=0.0
y(2)=0.0
y(3)=v*sin(angrad)
y(4)=v*cos(angrad)

return
end
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program ball

solves ball fly problem

parameter (nmax=10000)
dimension y(4,nmax)

¢ get input
1 call init (dt,y,tmax,nmax,n)

¢ document input
write (*,*) ’solving ball fly problem for dt=’,dt

write (*,*) ? up to tmax=’,tmax
write (*,*) ? resulting in nsteps=’,n
write (*,%) ? for initial velocities=’,y(3,1),y(4,1)

c call problem solution code
call nstep (dt,n,y)

c write out results
write (*,234) (n-1)*dt,(y(i,n),i=1,4)
234 format (’ at tmax=’,£10.3,° y=’,f15.6,’ x=’,f15.6,/,
* 19x, ? yy=?,£f15.6,’ vx=’,£f15.6)

¢ draw graph of flight path
call plobal (y,n)
goto 1
end

subroutine plobal (y,n)
¢ plot results from ball problem
dimension y(4,n),xx(10000),yy(10000)
do 1 i=1,n 2
xx(i)=y(2,1i)
yy(L)=y(1,i)
1 continue ot o
¢ call standard plotting routine to do the nitty-—gfiiéy
call plotfu(xx,yy,n,1,1,-.5,10.5,-3.,5.)
return
end

)

g X,

jgzl cat solvi.f
subroutine derivs (t,y,dydt)
dimension y(4), dydt(4)

ball fly problem

c
¢ this subroutine computes the right-hand- sides for
c
c variables are y(i)=y y(2)=x y(3)=y’ y(4)=x’



c r.h.s are y’=y’ x’=x’ y’’=-g -ylcv** .87 x’’=0 -x’cv¥*.87
c
¢ first, compute velocity

v=sqrt (y(3)**2+y(4)**2)

cv87=0.5*%v**0,87

c
dydt (1)=y(3)
dydt (2)=y(4)
dydt(3)=-10.0 -y(3)*cv87
dydt(4)=0.0  -y(4)*cv87
c
return
end
subroutine tstep (t0,dt,y0,y)
dimension y0(4), y(4), dydt(4)
c
c this subroutine steps the vector y through one time step,
¢ from t0 to tO+dt
c

call derivs (t0,y0,dydt)
do 1 i=1,4
1 y(i)=yo(i)+dt*dydt (i)

¢

return

end

subroutine nstep (dt,n,y)

dimension y(4,n)
c
¢ this subroutine solves the ball fly problem for n-1 time steps
¢ given initial conditions at t=0 in y(*,1)
c

t=0.0

do 1 i=2,n

call tstep (t,dt,y(1,i-1),y(1,1))

1 t=t+dt

c

return

end

jgzh cat exampl.out
solving ball fly problem for dt= 1.00000e-03
up to tmax=  2.000000
resulting in nsteps= 2001
for initial velocities=  48.62609 50.35379
at tmax= 2.000 y= -0.201220 x= 7.995113
vy= -4.889576 vx= 0.309135



solving ball fly problem for dt= 3.00000e-04
up to tmax= 2.000000
resulting in nsteps= 6667
for initial velocities=  48.62609 50.35379
at tmax= 2.000 y= -0.183019 x= 8.009531
vy= -4.888783 vx= 0.310836
gz
It is seen clearly that the numerical result depends upon the stepsize used, as is to be
expected from the previous discussion. The difference gives some indications of the numerical
error in the final result.

1.3 Short Course in FORTRAN Programming Methodology

You want to obtain good solutions to a problem as fast as possible and there are a number
of programming methods which will help you to do so. The most important consideration
is to keep your thoughts clean, modular and hierarchical. The only way humans can solve
complex problems is by means of breaking them down into smaller ones. This is applied
recursively until you finally reach the level of trivialities: the problem is solved. In exactly
the same way you should construct your programs: define blocks which attack a particular
task. In order to solve some well-defined task, one such block will have to call upon other
well-defined tasks. These blocks of work should be made into FORTRAN subroutines (or
functions). As a rule no subroutine should be more than about one (with an absolute
maximum of two) pages of FORTRAN. The less skilled you are, the smaller the subroutines
should be. For a beginner 5-10 lines of code is a reasonable size.

One subroutine should correspond to one small, well-defined piece of work which may
be trivial or elementary; in this case, we have a lowest-level subroutine in front of us which
does not call any others to do some work for it. On the next level, more complex tasks may
be accomplished by another small routine calling some lower—level routines to do logical
pieces of work. This partitioning should be done on a basis of logical connectednes: keep
things together which belong together, and do not mix together different tasks.

This information about subroutines applies equally well to data structures: the low-
est level is the machine word, usually a floating—point real number or an integer. These
individual objects may be grouped together into one-dimensional arrays.

element array
a(1) dimension a(100)
do 1 i=1,100

a(100) 1 a(i)=1./i

Of course, you only group together in an array data that is logically connected, like com-
ponents of a vector, or values of a function at a number of points, like the 1/z function in
above example. In the first problem the four elements of the solution vector are grouped
together:

Yy, Ty Vyy Vg _’y(l)’ y(2), y(3)s y(4)-

At a fixed time ¢, these four data elements define a state of our system (the ball in this
case).




