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Preface

Following the favourable reception of Surface Coatings—1 and —2,
the present volume has been prepared as the third in the series. The
subject of surface coatings continues to undergo development, thanks
to the ingenuity of researchers and technologists alike, and we offer
this volume as an anthology of timely reviews of the subject.

In preparing this volume we have made a change in editorial policy.
Instead of following the pattern of Volumes 1 and 2, and providing a
wide coverage of a range of new technologies within the field, we have
chosen to spread our net less widely. Accordingly, Surface Coatings—3
is concerned exclusively with waterborne coatings. These materials
are of growing importance in a world that is becoming ever more
concerned about pollution. The adverse effects that arise from the
indiscriminate use of technology are a subject of great importance in
the technologically advanced nations of the world, and waterborne
coatings have a role to play in reducing one important source of
atmospheric pollution.

The present volume begins with a comprehensive outline of the
chemical nature of water in a chapter by M. J. Blandamer; next, other
fundamental physico-chemical aspects of the use of waterborne
coatings are covered in the chapter by J. W. Nicholson and E. A.
Wasson. These opening two chapters set the scene for a series of
reviews of individual waterborne coatings technologies. Thus, Bunte
salt polymers are covered by S. F. Thames, urethane dispersions by R.
Arnoldus, loop emulsion polymerisation by K. R. Geddes, silicone
emulsion paints by W. Sittenthaler, acrylic ionomers by J. W.

\4



vi PREFACE

Nicholson and A. D. Wilson, and novel dispersing/curing agents for
waterborne epoxies by F. B. Richardson. Lastly, striking a contrasting
note, G. R. Hayward has prepared a chapter which outlines some of
the problems associated with the use of waterborne coatings. This last
chapter reminds .us that there is still much to do and that scope
remains for innovation in the field of environmentally friendly surface
coatings. If this book stimulates effort in that direction, as we believe
it will, then we have achieved our aim.

Finally, we wish to place on record our thanks to all our con-
tributors for their co-operation and support in the preparation of this
volume.

ALAN D. WIiLsON
JouN W. NICHOLSON
HAVARD J. PROSSER
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CHAPTER 1

Aqueous Solutions; Small Molecules

MICcHAEL J. BLANDAMER
Department of Chemistry, University of Leicester, Leicester, UK

1. INTRODUCTION

Water and aqueous solutions continue to fascinate chemists." The
major impetus for studying the properties of these systems comes from
their environmental, economic and biological importance. The en-
vironmental importance is highlighted by the fact that most of the
surface of this planet is covered by moderately concentrated aqueous
salt solutions. The biological interest is linked with the observation
that an adult human comprises over 40% by weight water. From an
economic standpoint, industrial development and associated improve-
ment in standards of living are accompanied by increased demand for
potable water. This chapter sets the stage for subsequent chapters
which consider the properties of aqueous solutions containing macro-
molecules. We start with a discussion of the properties of water,
commenting on a model for the pure liquid. We use this model as a
basis for a review of the properties of aqueous solutions containing
neutral solutes® and salts.’

Chemists are not normally interested in the properties of water as
such. Their interests centre on water as a medium in which to disperse
other substances, solutes. A key requirement of a solvent is that it
keeps solute molecules apart and trapped in local potential energy
wells.* In so doing a solvent inhibits precipitation of solids, phase
separation of liquid systems and escape to the gas phase of volatile
solutes. At the same time, the potential energy wells must not be too
deep, but should allow a measure of control with respect to the
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2 MICHAEL J. BLANDAMER

tendency of solute molecules to come together and hence with respect
to rates of chemical reactions in aqueous systems.>"

The importance of aqueous solutions means that the amount of
information concerning these systems is enormous and so is impossible
to cover completely in a chapter of manageable size. Therefore we
identify a number of important themes. For two reasons the discussion
is biased towards thermodynamic properties of aqueous systems. First,
thermodynamics provides the basis for analysing experimental results.
Second, most theories of aqueous solutions are aimed at explaining
trends in thermodynamic properties; e.g. solubilities and related
hydration parameters. We concentrate attention on the properties of
aqueous solutions at close to ambient temperatures and pressures. Of
course, the properties of these systems remain equally fascinating at,
for example, high pressures.'” We also note the interest in the
properties of water'™? and aqueous solutions at near-critical
conditions,”>"* where, for example, partial molar heat capacities of
salts are extremely large.”>?! Several interesting phenomena have
been reported in conjunction with chemical equilibria and extent of
reactions under close to critical conditions**** where a crucial factor is
the geometry of the thermodynamic surface near the critical point of
the solvent.”

In a review of this length it is not possible to delve too deeply into
the history of the subject. However, there are several landmarks. The
foundation of many models of aqueous solutions is the seminal paper
written by Bernal and Fowler®® in 1933, followed more than a decade
later by an important paper by Frank and Evans.”’ One of the most
fascinating books on water was written around this time by Dorsey.”
The paper by Frank and Wen® attracts considerable attention.
Némethey and Scheraga® showed how qualitative ideas about the
structure of aqueous solutions can be placed on a quantitative footing.
The review by Franks and Ives,’' with a recent update by Franks and
Desnoyers,*” brought developments in this subject to a wider audi-
ence. At about the same time, Robertson showed how activation
parameters for chemical reactions involving solutes in aqueous solu-
tions can be understood only in terms of the role of water <> water and
water < solute interactions.®"**

2. WATER MOLECULES AND HYDROGEN BONDING

The dimensions,*~® energies and spectroscopic properties®* of an

isolated water molecule are well established. The OH bond is strong,
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Fic. 1. Trans near-linear dimer for
two hydrogen-bonded water molecules;
distance R(O—O) =298 pm with 6 =
60+ 10 and 6 =0+ 10° redrawn from
C——mH——  Ref. 40.

the average bond energy (at 0 K) being 460 kJ mol~'. The HOH angle
is 104-523° and the OH bond length is 95-72 pm. Both bond angle and
length differ in the isotopic derivatives.’® This simple non-linear
molecule associates to form dimers via hydrogen bonding.”’** One
stable structure for dimers is the trans near-linear dimer* (Fig. 1). The
energy of this hydrogen bond is approximately 22 kJ mol™'; indicating
a strong cohesive interaction.*"*> However, when a hydrogen bond
forms between two nearest-neighbour water molecules, their centres
of mass move apart. In these terms, hydrogen bonding has an
important repulsive component. Within the context of aqueous solu-
tions, this feature of hydrogen bonding is extremely important. It
means that a water molecule which is strongly hydrogen bonded to a
neighbouring water molecule is in a region which has low local
density.* Further, if, as a consequence of adding a solute to water,
water—water interactions are enhanced then a change occurs from high
to low local density. The possibility that strong cohesion produces low
local density, high volume is almost unique to water. An equally
important feature is the co-operative aspect of hydrogen bonding; i.e.
energies of this interaction are not additive.*** In terms of spectro-
scopic properties, formation of hydrogen bonds between water mole-
cules produces large changes in frequencies of O—H stretching modes
and associated extinction coefficients in the IR region.**’

3. ICE

The space-filling potential of hydrogen-bonded water molecules is
illustrated by Fig. 2, which shows a pentameric unit, four water
molecules being hydrogen-bonded to a central water molecule.*®*®
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FiG. 2. Pentameric unit; shaded circles ) &@
represent hydrogen atoms and open
circles represent oxygen atoms;
d(O---0)=274pm and d(O---H)

=101 pm; redrawn from Ref. 36.
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FiG. 3. Phase diagram; redrawn from Ref. 52.
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Fic. 4. Ice-Ih; oxygen positions are located at the vertices; redrawn from
Ref. 2.

These elementary units assemble in various ways to form many
different structures. Common ice, ice-Ih, has an hexagonal unit
cell.***° Eleven polymorphs are described in the phase diagram for
ice, ice-XI being a recently discovered phase.”®>

Part of the phase diagram is shown in Fig. 3. There are also several
metastable forms; e.g. ice-Ic and ice-IV. Some of the high-pressure
polymorphs comprise interlocked (i.e. interpenetrating) but not inter-
connected networks; e.g. ice-VI, -VII and -VIII. The oxygen positions
in ice-Ih are shown in the structure given in Fig. 4. Many of the
interesting properties of this polymorph stem from the disordered
proton configuration. On a time-averaged basis, there are two
half-hydrogen atoms on each O—O link. This half-hydrogen model
accounts for the zero-point entropy, the high electric permittivity and
complicated vibrational spectra of ice-Ih.>*

Although ice-Ih is the stable phase, below 273-15 K and at ambient
pressure, liquid water can be supercooled to around 243 K.>* With fall
in temperature below 273 K, the molar volume (continuing the trend
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from the temperature of maximum density), the isothermal compres-
sibility and the relative electric permittivity increase. In addition, the
isobaric heat capacity increases with decrease in temperature.*®
Compressibility and heat capacity data point to a singularity near
228 K. This singularity reflects the intrinsic thermodynamic instability
of supercooled water, any local fluctuation, linked with turbulence,”
leading to nucleation®>*® and hence solidification.

4. CLATHRATE HYDRATES

There is no critical point associated with solid—liquid phase boundaries
comparable to those observed for the liquid—vapour phase boundaries.
In other words, transitions from solid to liquid always require that a
phase boundary is crossed. Nevertheless, considerable speculation is
generated by the possibility that structures similar to one or more of
the ice polymorphs exist in the liquid. In exactly the same way, the
structures of clathrate hydrates and related systems arouse speculation
that similar organisations exist in the corresponding aqueous
solutions.”>® Groups of hydrogen-bonded water molecules can form
pentagonal dodecahedra® (Fig. 5). These structures could occur in
liquid water.®

In the solid state, dodecahedra cannot fill space regularly, and so
voids are formed in which guest molecules are trapped; e.g. chlorine.
Simple clathrate hydrates are either structure I or II systems. The unit
cell of a structure I hydrate comprises 46 water molecules forming two
small and six large holes (Fig. 6). If these eight sites are filled by guest

Fic. 5. Oxygen positions in a pen-
tagonal dodecahedron formed by water
molecules; oxygen atoms at the ver-
tices; redrawn from Ref. 2.



