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INTRODUCTION

In the study of enumerative problems on plane conics the fol-
lowing variety has been extensively studied ([6],([71,([15]1,[17],[181],
[19]1,[20],[23], [25]).

We consider pairs (C,C') where C is a non degenerate conic and C'its
dual and call X the closure of this correspondence in the variety of
pairs of conics in ]P2 and iPz.

On this variety acts naturally the projective group of the plane
and one can see that X decomposes into 4 orbits: X0 open in X; x1,X2
of codimension 1 and Xy = i1 n iz of codimension 2. All orbit closures
are smooth and the intersection of 21 with 22 is transversal. This
theory has been extended to higher dimensional quadrics ([1],[15]1,[17],
[21]) and also carried out in the similar example of collineations
([161) .

The renewed interest in enumerative geometry (see e.g. [11]) has
brought back some interest in this class of varieties ([22], [5] ¥
cf.§6).

In this paper we will study closely a general class of varieties,
including the previous examples, which have a significance for enume-
rative problems.

Let G be a semisimple adjoint group, o: G > G an automorphism of
order 2 and # = G°. We construct a canonical variety X with an action
of G such that

1) X has an open orbit isomorphic to G/H

2) X is smooth with finitely many G orbits

3) The orbit closures are all smooth

4) There is a 1-1 correspondence between the set of orbit closufes

. with 2 elements. If J C Iz
we denote by SJ the corresponding orbit closure

5) We have S1 N SJ =5;y J
We thank the "Lessico intellettuale europeo" for supplying the quotation.

and the family of subsets of a set I

and codim SI = card I



6) Each SI is the transversal complete intersection of the S{u} 7
U

7) For each S; we have a G equivariant fibration TSy 7 G/PI with P
a parabolic subgroupwith semisimple Levi factor L, o stable, and

I

the fiber of L is the canonical projective variety associated to L
and o |L

Using results of Bialynicki Birula [2] we give a paving of X
by affine spaces and compute its Picard group. We describe the posi-
tive line bundles on X and their cohomology in a fashion similar to
that of "Flag varieties".

Next we give a precise algorithm which allows to compute the so
called characteristic numbers of basic conditions (in the classical
terminology) in all cases. The computation can be carried out mechanical
ly although it is very lengthy.

As an example we give the classical application due to H.Schubert
[14] for space gquadrics and compute the number of quadrics tangent to
nine gquadrics in general position.

We should now make three final remarks. First of all our method
has been strongly influenced by the work of Semple [15], we have in
fact interpeted his construction in the language of algebraic groups.
The second point will be taken in a continuation of this work.Briefly
we should say that a general theory of group embeddings due to Luna
and Vust [13] has been used by Vust to classify all projective equi-
variant embeddings of a symmetric variety of adjoint type and in par-
ticular the ones which have the property that each orbit closure is
smooth. We call such embeddings wonderful. It has been shown by Vust
that such embeddings are all obtained in most cases from our variety X
by successive blow ups, followed by a suitable contraction.

This is the reason why we sometimes refer to X as the minimal
compactification, in fact it is minimal only among this special class.
The study of the limit provariety obtained in this way is the
clue for a general understanding of enumerative questions on symmetric

varieties as we plan to show elsewhere.

Finally we have restricted our analysis to characteristic 0 for
simplicity. Many of our results are valid in all characteristics (with
the possible exception of 2) and some should have a suitable characte-
ristic free analogue. Hopefully an analysis of this theory may have
same applications to representation theory also in positive characte-
ristic.

The first named author wishes to thank the Tata institute of
Fundamental research and the C.N.R. for partial financial support
during the course of this research. Special thank go to the C.I.M.E.



which allowed him to lecture on the material of this paper at the
meeting on the "Theory of Invariants” held in Montecatini in the period
June 10-18, 1982.

The second named author aknowledges partial support from Brandeis
University and grants from N.S.F. and C.N.R. during different periods
of the development of this research. :

1. PRELIMINARIES

In this section we collect a few more or less well known facts.

1.1. Let G be a semisimple simply connected algebraic group over the
complex numbers. Let o: G > G be an automorphism of order 2 and H=G"
the subgroup of G of the elements fixed under o. The homogeneous space
G/H is by definition a symmetric variety and more generally, if G' is
a quotient of G by a (finite) o stable subgroup of the center of G,
the corresponding G'/H' will again be a symmetric variety.

Let g, h denote the Lie algebras of G, H respectively. o induces
an' automorphism of order 2 in g which will again be denoted by o and h
is exactly the +1 eigenspace of o.

We recall a well known fact:

PROPOSITION. Every o-stable torus in G is contained in a maximal torus
of G which is o stable.

If T is a o stable torus and t its Lie algebra, we can decompose
tast=1t o ¢t, according to the eigenvalues +1, -1 of o. t  is the
Lie algebra of the torus T = 77 while t, is the Lie algebra of the
torus T, = {tie T|t0 = t~1} such a torus is called anisotropic. The
natural mapping To X T1 = T is an isogeny, it is not necessarily an
isomorphism since the character group of T need not decompose under o
into the sum of the subgroups relative to the eigenvalues #1. We in-
dicate still by o the induced mapping on E* and can easily verify in

*
case T is a maximal torus and ¢ C t the root system:

d.) 1 ) ol Y g9 is the root space decomposition of g then
aEd w
o(g,) = g,0 » hence a(2) = 0.

(ii) o preserves the Killing form.

We want now to choose among all possible ¢ stable tori one for which
dim T1 is maximal and call this dimension the rank of G/H, indicated
by £.



1.2. Having fixed T and so the root system ¢ we proceed now to fix the
positive roots in a compatible way.

LEMMA. One can choose the set ¢+ of positive roots in such a way that:
EE o € ®+ and o Z 0 on E1 then o® € 7.

PROOF . Decompose E* = E; @ E:; every root o is then written o = oyt oy
agd o = 0, = &4. Choose two R-linear forms ¢  and ¢4 on E; and

31 such that ¢O and ¢1 are non zero on the non zero components of the
roots. We can replace ¢1 by a multiple if necessary so that, if a=

= o, + o, and a, # 0 we have |¢1(a1)| > |¢0(ao)
R-linear form ¢ = ¢o ® ¢1, we have that ¢(a) # 0 for every root a ;
moreover if a Z 0 on tyr i.e. a = a, + oy with o4 # 0 the sign of ¢(a)
equals the sign of ¢,(a,). Thus, setting ot = {0 € ®|¢(a)> 0} we have
the required choice of positive roots. Let us use the following nota-
tions

. Consider now the

g omda Sl gle, = 0k 8, =%~ &
Clearly e fone @lao = o} while by the previous lemma ¢ interchanges
o, with o .

Having fixed ¢+ as in the above lemma we denote by B C G the cor-
responding Borel subgroup and by B its opposite Borel subgroup.

1.3. It is now easy to describe the Lie algebra h in terms of the root

decomposition. We have already noticed that o(ga) =Lgieia
= =0

LEMMA. If o € ¢o , 0 is the identity on 9y -

PROOD o Let X ., Y. 4 ha be the standard 512 triple associated to a.

o o

since o’ = o we have U(ha) = ha' On the other hand since o(g+a) = g
we have o(xu) = tx, . Now dE o(xa) = -x, we must have also o(ya)= X
since ha = [Xa 7 ya]. Now if we consider any element s € t, we have
[xa , s8] = [ya » s] = 0 since o vanishes on t, by hypothesis. This

implies, setting t = Xy + Yqie that 51 + Ct is a Toral subalgebra on
which o acts as -1. Since we can enlarge this to a maximal Toral sub-
algebra, we contradict the choice of T maximizing the dimension of T, -
PROPOSITION. h = t_ + S é : g i é a Clx, + a(xy)).

o 1
PROOF. Trivial from the previous lemma.

We may express a consequence of this, the so called Iwasawa

decomposition: The subspace 51 #r z 13 Cxa is a complement to h and

a € ¢
1
so it projects isomorphically onto the tangent space of G/H at H, in



particular since Lie B D t, + ik Cx, , BH C G is dense in G.
u€¢1

COROLLARY. dim G/H = dim t, + 1/2]e,].

1.4. If T C ¢, is the set of simple roots, let us denote Fo =T N ¢
F1 =T n 0, explicitely:

L {81,...,Bk}; Ty = {a1,...,aj}.

e (o " i G o
LEMMA. For every oy T1 we have that a; is of the form Oy ZniJBJ

for some Oy € I‘1 and some non negative integers n,.. Moreover,

(o} +J

B = %y Zniij.
PROOF. By Lemma 1.2 we know that ag € ¢ hence we can write

O s :
oy = égmikuk + Znijsj) where My v nij are non negative integers.Thus
gii= a0, T z mik(z mktat) P Zmikznkjej = Znijej' Since the simple

roots are a basis of the root lattice we must have in particular

b

tive integers it follows that only one my

Zmikmkt =0 for t # 1 and Zm.kmki = 1. Since the mij's are non nega-
k is non zero and equal to 1
and the m is also equal to 1.

Now consider the fundamental weights. Since they form a dual
basis of the simple coroots we also divide them:

w1,...,w., C1""'Ck where:

J

(i, éj) = 0, (w, ’ :)L) =: 8%

1 A
and similarly for the z.'s.
i 1 3] 3j = ¥ cJ

Since o preserves the Killing form we have:

(o] e s a v T
(wi ’ Bj) T (wi ’ Sj) =0
B e w7, 8% = @i, £ (<o = Iny84))
J (o piaa ) J
i i
20, (a o, ) L
= -7, . ) = k'k(w‘;,ak)
Callisois oy ) (al rooy)
We deduce that
(igis.", o o)
Gl sl k k
wy = W -



o (ak ’ ak)
Now w, must be in the weight lattice so —M = _
i (ai A ai)

Reversing the role of i and k we set that it must be 1 so

is an integer.

We can summarize this by saying that we have a permutation ¥ of order

2 in the indices 1,2,...,j such that «° = e 5
o)
DEFINITION. A dominant weight is special if it is of the form Zniwi
with Iy =, . A special weight is regular if n; #0for all d.
o(i)
Thus we have that a weight A is special iff A% = -},
diaDs

LEMMA. Let A be a dominant weight and let VA the corresponding irre-
ducible representation of G with highest weight A. Then if Vﬁ denotes
the subspace of V, of H-invariant vectors dim VE <A and i€ V? # 0

A is a special weight.

PROOF. Recall that BH C G is dense in G so that H has a dense orbit
in G/B. Also V, H°(G/B,L) for a suitable line bundle L on G/B.

s

So if s1,sz€EV§ {0}, we have that gl is ameromorphic function on
2

G/B constant on the dense H orbit, hence S4 is a multiple of s

our first claim follows.

Now assume Vﬁ # 0 and let h € V§ - {0}. Fix an highest weight vector
vy = VA and let U C VA be the unique T-stable complement to vA.Clearly
U is BT stable and BH C G is dense in G. Then assume h € U but an

the other hand B Hh spans VA a contradiction. Hence

I Qlie

2 and

h=av, +u a€e —Hol,,u €U

Since TS CH and h is H invariant this implies )\|To = 1d hence X 18
special.

1.6. If A is any integral dominant weight and VA the corresponding

irreducible representation of G with highest weight A, we define v

to
be the space vy with G action twisted by o (i.e. we set gov in ngto
be o(g)v, in Vk)'
*
z*
PROOF . V: can be characterized as the irreducible representation of G

LEMMA. If A is a special weight then Vg is isomorphic to V




having -)A as lowest weight. Now let vy L= VA be a vector of weight A,
let P be the parabolic subgroup of G fixing the line through Vy . P is
generated by the Borel subgroup B and the root subgroups relative to
the negative roots -o for which ¢a,\ ) = 0. Thus the parabolic subgroup
Po, transformed of P via o, contains the root subgroups relative to

the roots isi and also to the roots o, a € ¢:. Now o(¢:) = ¢; hence

P’ contains the opposite Borel subgroup B~ . Clearly Vix € Vg is sta-
bilized by P% hence vy is a minimal weight vector and its weight is

-\X. This proves the claim.

1.7. We have just seen that, if A is an integral dominant special
weight Vx is isomorphic, in a o-linear way, to V;. Under this isomor-
phism the highest weight vector Viy is mapped into a lowest weight
vector in VX' We normalize the mapping as follows: In VA the line Cvk
has a unique T-stable complement Vx we define vk € V: by: (VA,VA) =1,
(VA,VA ) =0. vx is easily seen to be a lowest weight vector in V;.We
thus define h: V; vy to be the (unique) o-linear isomorphism such

that h(vx) =N

REMARK. If V = @ VA. is a G-module, the action of G on P (V) factors
through G if and oniy if the center of G acts on each in with the
same character. This applies in particular when V is a tensor product
of irreducible G-modules.

Y
We now analyze the stabilizer in G, H; of the line generated by h.

LEMMA. i) ﬁ equals the normalizer of H.
ii) We have an exact sequence H & E - C, where C is the subgroup of
the center of G formed by the elements expressible as go(g-1) for
some g € G.
iii) The stabilizer of the line generated by h in G is the subgroup
fixed by the order two automorphism induced by o on G

PROOF. Assume 9h = ah, a a scalar. Since h is ¢ linear, gh==ghg-1 =

= go(g-1)h. Therefore go(g-1) acts on V) as a scalar. Since V, is ir=
reducible this implies go(g_1) lies in the center of G. Conversely if
go(g-1) lies in the center of G, g € g. We claim g € N(H). In fact putt
ing ¢ = gc(g—1) we get for each u € H

o(g—1ug) = 0(9_1)uc(g) = 0(9_1)§—1UC0(9) = g_1ug.

n
Now assume g € N(H). To see that g € H it is sufficient to show that
go(g—1) lies in the center of G or equivalently that it acts trivially
on g = Lie G via the adjoint representation. Decompose g = h o 94 And



consider the subgroup K in Aut(g) generated by adN(H) and o. Since

adN (H) is reductive and has at most index 2 in K(N(H) is clearly o
stable) also K is reductive. We claim that both h and g, are K stable.
In fact h is clearly K stable and the reduct1v1ty of K implies that it
has a K-stable complement in g, but the unique o stable complement of
h is g, so 9, is also K stable.

Now notice that since g € N(H), for each u € H

g ug = o(g”Muo(g)

so that go(g~ ) commutes w1th H and acts trivially on h. On the other-
hand, if x € gqr we have adg (x) = gqr since 94 is K stable, so

~adg” 1 (x) = o(adg™ ' (x)) = -ado (g™ 1) (x)

and hence adgc(g-1)(x) = X so go(g_1) acts trivially also on 947 and so
on g. This proves i).

ii)—is clear from the above.

To see iii) notice that the subgroup fixing the line generated by h in
G is the image in G of H. Hence if we denote by o' the automorphism
induced by o on G it consists of the elements such that go'(g—1) = id

which are the elements fixed by o'.

: n
REMARKS. a) H has finite index in H..
b) H is the largest subgroup of G with LleH = h.

PROOF. a) follows from part ii) of the previous lemma and b) from the
fact that H is connected (cf. [28]).
We complete vy to a basis [vx,v1,v2,...,v } of weight vectors and

consider the dual basis {v V1,V2,...,Vm} in V;. We have h(v )-—VX and,

1f X5 is the welght of vy we have ~xy as weight of v1 and so —xi as
weight of Wo= h(v'). If we identify hom(V*,VA) with Ve V, we see
that h is identified with the tensor

h = 8 v, +

w, & v,.
. 1t i
i

v
A A 1

[N el=]

vy 8 vy has weight 2) while w; 8 v, has weight o xg.

The fact that h is o-linear implies in particular that it is an H
isomorphism. This in turn means that h is fixed under H.
Recall that v, 2 v, generates in VA 2] VA the irreducible module sz.
Now order a1,...,aj so that & ag are mutually distinct for s < 2
(and of course by 1.4 if j > &, for each i > % there is an index s <k
such that il u: S ag Yo call &s = %(as = a:) S < 4 the restricted
simple roots.

=%



PROPOSITION. i) If A is a special weight then Vo contains a non zero
element h' fixed under H.

ii) h' is unique up to scalar multiples and can be normalized to be

] -
b5 Yoo ¥ ) z;
with Vo @ highest weight vector of VZA and the %}s weight vectors
%
having distinct weights whose weight is of the form 2 (A - 2 nsas), n,
s=1

non negative integers.
iii) if A is a regular special weight then we can assume that the vec-

tors Zyreees2 have weight 2 (A —&1),...,2(A —&2).

2
PROOF. If we put h' equal to the image of h under the unique G-equivari

ant projection V, & V i) ii) follow from the expression of h as

=
e WL
a linear combination of weight vectors given above. To see iii) assume

A (and hence 2)\) is a regular special weight. Since h' is fixed under

H, xh' = 0 for any x € h = LieH. In particular if we let &s be a simple
restricted roet and a_ € I', be such that a_= l(a - oY) we have (cf.
s 1 87 2Es s
1is:3)
(X—u -+ o(x_a YR =0, X € PR
s s s s
But
(x—a s O(X—a ))VZA T
s s S

since o(x__ ) € g and —ag € oF. also by the regularity of 2A

a 1
SV is a°non zerd weight vector of weight 2X -a, . It follows that

s L ; . i
for some Zg c(x_as)zi = x-aSVZA so that z, has weight 2 (A as) proving

the claim.

The analysis just performed does not exclude that VA itself may
contain a non zero H-fixed vector hA' In this case we have seen that
we can normalize h, : h, = v, + Zul, ul

A A A i
lows that hx ] hA must project to h in VZA (by uniqueness of h).

lower weight vectors. It fol-

Now the dominant A's for which dim V§ = 1 have been determined
completely [9],[24], the result is as follows: Let us indicate A1

set.

such

Consider the Killing form restricted to t, and thus to E:. We

look at the restriction of ¢, to t,, if a € ¢, let us indicate o the

1
restriction of a to 31.
AV

e E g: let us indicate by u its extension to t by setting it 0
to t,.
Then the theorem in [9] is:
*

Consider the set of u € §1

such that



10

A%L%l is a positive integer for all a € ¢

(o, )
Then the set of weights ﬁ of t so obtained is exactly the set A1 of A
for which dim V? =% One, can understand this theorem in a more pre-
cise way. If o € ¢, then a is exactly %(a-—ao), and (aj;a) = (0.,0) . Now
also a weight w is of the form a if and only if w = %(m-—wo). For such
weights of course (w,Bj) = 0. Thus we see immediately that A1 is con-
tained in the positive lattice generated by the weights Wy if oil) =08

and w, = wn if g(i) # i.
£ o(i)

To understand exactly the nature of A1 we must see if

(w, ,0) (W, = wy,,
_1_ (resp. it _0£1
(a,a) (o, )

),&)

is an integer.
Since in any case for such special weights A we have 2\ € A1 one knows
at least that these numbers are half integers. It follows in any case

that A1 is the positive lattice generated by the previous weights or
their doubles. i.e.

E s
2 wy (resp. wy wg(i) or 2(wi )). Recall that & = rk A" is also

wv
o(i)
the rank of the symmetric space.

2. THE BASIC CONSTRUCTION

2.1. We consider now a regular special weight ) and all the objects of
the previous paragraph VA' hice VZA' Let nowiPzA = P(VZA) be the pro-
jective space of lines in V,, and B EZPZA be the class of h'. The

basic object of our nalysis is the orbit G - h of & in P and its

closure g =G - ﬁ. By construction g is a G-equivariant gémpactifica—
tion of the homogeneous space G -ﬁ, furthermore the stabilizer N of ﬁ
is a group containing the subgroup H.

We will analyze in detail i and in particular will see that H has
finite index in ﬁ. For the moment we concentrate our attention to z.
Since 2 is closed in sz and G stable it contains the unique closed or
bit of G acting on sz, i.e. the orbit of the highest weight vector

vy 2 vy - Now the following general lemma is of trivial verification:

LEMMA: If X is a G variety with a unique closed orbit Y and V is an
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open set in X with Y NV # ¢ then X = U gV.
’ gGG
The use of this lemma for us is in the fact that it allows us to

study the singularities of X locally in V.

2.2. Let )\ be a regular special weight. Consider a G module

WV, 8 Ev _ with p, = 2] - In;2a; some n, > 0. Let h € V be an H

invariant w1tﬁ component h!'dn VZA.DecomposeV2A= CVZA e sz In:zast

stable way and consider the open affine set A = v ® v [} Zv . S P(W).
Hi

Notice that h € A and A is B  stable.

2\ 2\

LEMMA: The closure in A of the T1 orbit T1h is isomorphic to % dimen-

1 9

sional affine space Lz. The natural morphism T1 = T7"h C A has coordi=

—2a1 —2a2 -ZaZ 1
nates t > (t e Fisusbep e ). T h is identified with the open set

of AZ where all coordinates are non zero.

PROOF: By prop. 1.7 we can write h = Vo ;2 Ezi with zi weight vectors
; i

of weights Xyoi= 2h = Zm§1)25j (some mj > 0) and z%,...,zi of weights

2% = 204500042} - 2a

X.
g2A 12; which, in affine coordinates, is

0" Let us apply an element t € T' to h we get

th = oyt

2
Xi—ZX

+ )t z;.

Yo

From the previous formula x; - 2x=1) mél)(—zaj), this means that

the coordinates of th are monomials in the first & coordinates.
This means that ’I‘1 maps to a closed subvariety of_ A, isomorphic
=20 =20

to affine space Al, via the coordinates (t 1,...,t Q). Since the

restricted simple roots are linearly independent the orbit T1h is the
open dense subset of AQ consisting of the elements with non zero coor-
dinates.

REMARK. The s%gbilizer of thiiin 1! is the finite subgroup of the elements
t € 7! with £°%1 = 1.,
2.3. Let us go back to z C PZA’ Consider the open affine set
A= v, @ V Poy and set V=AaA N i. Remark that V is B~ stable, it
contalns h and so also AQ, the closure of T1h in A, hence Vo € V and
therefore V has a non empty intersection with the unique closed orbit
or /G in PZA'

Let U be the unipotent group generated by the root subgroups xa’
o€ ¢;. Since U acts on V we have a well defined map ¢: U X Al = V.- by

the formula ¢(u,x) = u-xXx.



