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INTRODUCTION

Descriptive geometry is one of the fundamental disciplines making up an
engineering education.

It is concerned with setting forth and justifying methods of constructing
representations of three-dimensional forms in the plane, as well as methods
of solving geometrical problems on the basis of given representations of
these forms. As is known, three-dimensional forms can be represented not
only in the plane, but on some other surface, for instance, a cylinder or
sphere. The latter cases are studied in special branches of descriptive ge-
ometry.

The representations constructed according to the rules of descriptive
geometry enable us to visualize the shape of objects and their relative
positions in space, to determine their dimensions, and to study their geo-
metrical properties.

Descriptive geometry develops the student’s three-dimensional imagina-
tion by making frequent appeals to it.

Finally, descriptive geometry provides a number of practical means for
engineering drawings, ensuring their clarity and accuracy, and, hence, the
possibility of manufacturing the represented objects.

The rules for constructing representations, set forth in descriptive ge-
ometry are based on the method of projections.

It is standard practice to begin studying the method of projection with
the construction of the projections of the point, since the construction of the
projections of any three-dimensional form involves considering a number
of points belonging to this form.
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CHAPTER 1

THE METHOD
OF PROJECTING

Sec. 1. Central Projections

To obtain central projections we must take a plane (the plane of projection)
and a fixed point not in the plane (the centre of projection). The method of
central projection is illustrated in Fig. 1 showing the plane P and the point S.
Taking a point 4 and drawing through S and A a straight line, we intersect
the plane P at point a,. We then proceed in the same way with the points
B and C. The points a,, by, ¢, are central projections of the points 4, B, C on
the plane P: they are obtained as the intersections of the projecting lines (or
rays called the projectors) S4, SB, SC with the plane of projection®.

If for a certain point D (Fig. 1) the projector turns out to be parallel to
the plane of projection, then we conventionally consider that they intersect,
but at a point at infinity. The point D also has a projection which is an
infinitely distant point (d-)-

Leaving the position of the plane P unchanged and taking a new centre

S, (Fig. 2), we obtain a new projection of the point 4 (point ay1). If the

centre S5 is taken on the same projector S4, then the projection a, remains
unchanged. "

Hence, given the plane and the centre of projection, we can construct
the projection of a point (Fig. 1), but having the projection of a point (for
instance, @) it is impossible to determine the position of the point 4 in
space, since any point on the projector SA4 is projected into one and the
same point. Obviously, for obtaining the unique solution some additional
conditions are required.

The projection of a line can be constructed by projecting a number of its

points (Fig. 3), all the projectors generating a conical surface** or being

*The centre of projection is also called the pole of projection, and central projection
is termed ‘polar projection’.
**That is why central projections are also called conical.
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located in one plane (for instance, when projecting a straight line not passing
through the centre of projection, or a polygonal line and a curve all points
of which lie in a plane coinciding with the projecting plane).

Obviously, the projection of a line is obtained as the intersection of the
projecting surface with the plane of projection (Fig. 3). But, as is shown in
Fig. 4, the projection of a line does not determine the line being projected,
since the projecting surface may contain a number of lines which are pro-
jected on the plane of projection into one and the same line.

From the projecting of points and lines we may pass over to projecting
a surface and a solid.

Sec. 2. Parallel Projections

Let us now consider the method of parallel projection.

When the centre of projection is a point at infinity, all the projections are
parallel. They are drawn in the direction indicated by an arrow (see Fig. 5).
The projections constructed in such a way are called parallel.

Thus, parallel projection may be considered as a particular case of central
projection.

Hence, the parallel projection of a point is defined as the point of intersection
of a projector drawn parallel to a given direction with the plane of projection.

To obtain a parallel projection of a line it is sufficient to construct pro-
jections of a number of its points and to draw through them a line (Fig. 6).

In this case all the projectors form a cylindrical surface, therefore parallel
projections are also called cylindrical.

In parallel projections, the same as in central projections in general:

(1) for a straight line the projecting surface in the general case is a plane,
and therefore a straight line is, in general, projected into a straight line;

(2) any point and line in space have its unique projection;
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(3) each point on the projection plane may be the projection of a set of
points if they are situated on a straight projector (the point d, in Fig. 5 is the
projection of points D, Di, Ds);

(4) any line on the projection plane may turn out to be the projection of a
set of lines if they are contained in a common projecting plane (Fig. 7: the
line segment a,b, serves as the projection of line segments 4B and 418 of
straight lines and the segment A4»B» of a plane curve); obviously, to obtain
the unique solution in this case, some additional conditions are required;

(5) to construct the projection of a straight line it is sufficient to project
two of'its points and to draw a straight line through the obtained projections
of these points;

(6) if a point belongs to a straight line, then the projection of the point
belongs to the projection of this line (point K in Fig. 8 belongs to a straight
line, and the projection k, belongs to the projection of this line).

In addition to the above listed properties the following is valid for parallel
projections:

(7) if a straight line is parallel to the direction of projecting (as, for in-
stance 4B in Fig. 8), then the projection of the line (and any of its segments)
is a point (ap, or by);

(8) a segment of a straight line parallel to the plane of projection is pro-
jected on this plane true length (Fig. 8: CD is equal to c,d, as segments of
parallel lines between parallel lines).

Later on we shall consider some more properties of parallel projections
showing what relationships inherent in objects under considerations are
retained in the projections of these objects.

Applying the methods of parallel projection of a point and a line, it is
possible to construct parallel constructions of a surface and a solid.

Parallel projections are subdivided into oblique and orthogonal projections.
In the first case the direction of projecting forms with the plane of projection
an angle not equal to 90°, whereas in the second case the projectors are
perpendicular to the plane of projection.

When considering parallel projections the viewer should be imagined as
located at an infinite distance from the image. But in reality objects and
their images are viewed from a finite distance, and the rays entering viewer’s
eye form a conical, but not a cylindrical, surface. Hence, 2 more natural
picture is obtained (provided certain conditions are observed) using a central
projection, but not a parallel one. Therefore, when it is required to get a
representation producing the same visual impression as the object itself,
we usually resort to perspective projections which are based on central
projecting.

But despite the above mentioned conditionality parallel projecting is
widely applied. This is explained by the properties of parallel projections as
well as by a comparatively greater simplicity of the constructions involved.
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Sec. 3. Monge’s Method

Information and methods of construction required for representing space
forms in the plane have accumulated gradually since ancient times. During
long period of time plane representations were accomplished mostly in a
visualized manner. With the development of engineering paramount impor-
tance was acquired by the need of developing a method which would ensure
accuracy and easiness in measuring graphical representations, i.e. ensure
the possibility to locate each point of the representation relative to other
points or planes and to determine the dimensions of line segments and figures
by simple methods.

The accumulated rules and methods for constructing such representations
were systemized and further developed by the great French mathematician
G. Monge, the inventor of descriptive geometry, in his work “Essais sur les
Géométrie déscriptive” issued in 1779.

Gaspard Monge (1746-1818) is known in history as a great French
mathematician, engineer, a public man and a stateman during the period
of Revolution of 1789-94 and the rule of Napoleon.

In 1768 Monge became professor of mathematics and in 1771 professor
of physics at Méziéres; in 1780 he was appointed to a chair of hydrolics at
the Lyceum in Paris (held by him together with his appointments at Méziéres)
and was received as a member of the Académie.

Monge wrote various mathematical and physical papers.

He took an active partin the measures for the establishment of the normal
school and of the well-known Ecole Polytechnique (Polytechnic school) and
was at each of them professor for descriptive geometry.

Being one of the ministers (Minister of Marine) in the revolutionary
government of France, Monge did much for its defence against foreign
invaders, as well as for the victory of the revolutionary troops.

For a long time Monge had no possibility to publish his work containing
the description of the method elaborated by him. It was considered so valu-
able that it long was guarded as military secret. Only at the very end of the
18th century the prohibition to publish his book was rescinded by the French
government, and in 1799 Monge issued the mentioned work in which he
gave a comprehensive description of his method.

On the fall of Napoleon he was deprived, as a Bonapartist, of all his hon-
ours and excluded from the list of members of the reconstructed bodies. He
was forced to hide, and ends his life in poverty.

The method of parallel projection (with orthogonal projections on two
mutually perpendicular planes of projection) invented by Monge was and
remains the principal method applied for making engineering drawings,
since it ensures obviousness, accuracy, and easiness in measuring represen-
tations of various objects in the plane.

As a result of his researches, Monge arrived at that general method of the
application of geometry to the arts of construction that later became known
as descriptive geometry.
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The present course deals preferably with orthogonal projections, which
are a particular case of parallel oblique projections. If the latter are used, it
will be mentioned each time.

- QUESTIONS TO CHAPTER 1

1. How do we construct the central projection of a point?

2. In what case does the central projection of a straight line represent a
point?

3. What does the method of parallel projection consist in?

4. How is the parallel projection of a straight line constructed ?

5. May the parallel projection of a straight line represent a point?

6. If a point belongs to a given straight line, then what are their relative
positions?

7. In what case of parallel projection is a segment of a straight line pro-
jected true length?

8. What is the Monge’s method?

9. How is the word aorthogonal’ deciphered?



