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Editor’s Statement
\

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely to
survive change of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volutnes will appear in
no particular order, but will be organized into sections, each one comprising
a recognizable branch of present-day mathematics. Numbers of volumes
and sections will be reconsidered as times and needs change.

It is hoped that this enxterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied
but where it hasnot yet penetrated because of insufficient information.
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Preface

Birkhoff, or lacunary, interpolation appears whenever observation gives
scattered, irregular information about a function and its derivatives. First
discovered by G. D. Birkhoff in 1906, it received little attention until 1. J.
Schoenberg revived interest in the subject in 1966. Lacunary interpolation
differs radically from the more familiar Lagrange and Hermite interpolation
in both its problems and its methods. It could even be described as
“non-Hermitian” interpolation. The name Birkhoff interpolation is justified
also from a historical point of view.

At present, the main definitions and theorems for polynomial Birkhoff
interpolation seem to have been found, while the theory for other systems of
functions, most notably splines, is in healthy development. Since this
material can be found only in research periodicals and proceedings of
conferences, it is time for a comprehensive exposition of the material. We
have gone to great lengths to unify, simplify, and improve the information
already published or in press, and to set the stage for further developments.

The book should be of interest to approximation theorists, numerical
analysts, and analysts in general, as well as to computer specialists and
engineers who need to analyze functions when their values and those of
their derivatives are given in an erratic way. The book could be used as a
text for a graduate course, requiring little more than an undergraduate
mathematics background.



Avi : Preface

Many novel ideas and tools have been developed in this theory; interpola-
tion matrices, coalescence of rows in matrices, independent knots, prob-
abilistic methods, diagrams of splines, and the Rolle theorem for splines.
There are applications to approximation with constraints, to quadrature
formulas, to splines and their zeros, and to the theory of Chebyshev
systems.

The book is largely self-contained, at least in its central parts (Chapters
1-8 and 13-14). We begin with the basic definitions and elementary
properties of Birkhoff interpolation by linear combinations of smooth
functions in Chapters 1 and 2. In Chapters 3 and 4 we introduce coales-
cence of rows of matrices, and obtain many applications. Rolle theorem
methods and independent knots are discussed in Chapter 5; these methods
work for interpolation by polynomials in quite general systems of functions.
Chapter 6 is concerned with singularity theorems; conditions are given
under which the Birkhoff interpolation problem is not solvable.

Chapter 7 returns to the original problem of Birkhoff—to describe the
remainders of interpolation formulas by means of an integral involving a
kernel function. This naturally leads to the introduction of Birkhoff splines
and to the study of their zeros.

In Chapter 8 we investigate a special case that illustrates the complexity
of the Birkhoff interpolation problem in even a very simple situation.
Selected applications of Birkhoff interpolation to approximation theory and
Chebyshev systems are presented in Chapter 9. Many related applications
had to Be omitted, but they can be traced through the literature cited in the
notes. Birkhoff interpolation of functions of several variables—a subject
that needs much further investigation—also must have useful applications.

In Chapter 10 we deal with quadrature formulas based on general
Birkhoff interpolation matrices. This relatively new theory culminates in
theorems about the existence of formulas of Gaussian type.

Lacunary interpolation at special knots has received considerable atten-
tion since the work of Turan and his associates in the 1950s. In Chapters 11
and 12 we give a sample of these results; much related material had to’be
omitted for lack of space. _

Chapters 13 and 14 offer an introduction to Birkhoff interpolation by
splines. This subject is inherently complicated, and considerable effort has
been made to simplify and unify the theory by means of new notation and
methods. Applications abound here, and are presented in the last sections of
Chapter 14. For the convenience of the reader, we include a Bibliography
(with the indication of the sections where different papers are quoted), a
Symbol Index, and a Subject Index.

The book has been developed from the report of one of us to the Center
of Numerical Analysis, University of Texas, in 1975, as well as from lectures
by each of us at our universities and from our recent publications. The
authors gratefully acknowledge support of their research activities during
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the time of writing this book by the National Science Foundation of the
United States and the National Science and Engineering Research Council
of Canada. We are grateful for generous advice and comments from C. de
Boor, T. N. T. Goodman, M. Marsden, C. Micchelli, P. Nevai, A. Sharma,
P. W. Smith, and others. We are especially thankful to G. C. Rota for
encouraging our participation in the Encyclopedia.

G. G. Lorentz
K. Jetter
S. D. Riemenschneider



Introduction

Approximation and Interpolation in
the Last 20 Years

This is the first in a series of books dealing with approximation and
interpolation of functions. Many changes have occurred in this theory
during the last decades. In what follows, we shall try to describe some of the
problems and achievements of this period.

Until about 1955, the leading force in apprommanon was the Rus-
sians, in particular, Bernstein and his school (Ahiezer), Chebyshev,
Kolmogorov, and Markov. The development of the subject in Germany,
Hungary, and the United States occurred later. The West certainly leads in
the number of papers published—see the bulky Journal of Approximation
Theory. The twelve sections that follow review the newer developments.

The two classical books dealing with approximation and interpola-
tion are those of Natanson [0-N] and Ahiezer [0-A]. Important recent books
include two Russian works devoted to special problems: Korneichuk [0-K, ]
(see also [0-K,]) deals with best constants in the trigonometric approxima-
tion, while Tihomirov [0-T,] treats extremal problems, particularly widths
and optimization. The book of Butzer and Berens [0-B,] introduced func-
tional analytic methods into the field; the two books by de Boor [0-B,] and

- Schumaker [0-S] deal with splines, an American development rich in practi-
cal applications. Karlin and Studden [0-K,] treat Chebyshev systems ex-
haustively. Books on general approximation theory are those of Rice [0-R],
Lorentz [0-L], Dzyadyk [0-D], and Timan [0-T,]; the last book contains a
wealth of material. Several books will be mentioned in later sections.

XiX
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What might one recommend to someone who wants to begin a study
of the subject? My choice would be the books of Natanson [0-N] and
Cheney [0-C], and perhaps also my own [0-L], for the real approximation,
and that of Gaier [0-G] for the complex approximation.
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§1. BEST APPROXIMATION; CHEBYSHEY SYSTEMS

We denote by &, (or by 9,) the set of all algebraic polynomials P, (or all
trigonometric polynomials 7,) of degree < n on an interval [a, b] (or the
circle T). The degree of approximation of a function f in the L, norm is

E(f)p=min|f=P,|l,,  EXf),=min|f=TJ,  (1.I)

(the space L is here interpreted to be C). The polynomial of best
approximation to f is one that realizes the minimum in (1.1). The problem of
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finding or describing polynomials of best approximation is the problem of
the qualitative theory of approximation, which has been overshadowed in
recent decades by the quantitative theory.

In the case 1< p < + oo, the uniqueness of the polynomial of best
approximation follows from the convexity of the space L,. For spaces C and
L,, we also have unicity, but not trivially. We have:

Let P, = f € C[a, b). Then P, is the best approximation to f in &, if
there exists an alternance, that is, points a < x, <--- <x,,, <b for
which

f(x)-P(x)=e(=D)'f =P, i=1l,...,n+2, e=+lor —1.
(1.2)

This is Chebyshev’s theorem. Actually, Chebyshev only proved, using
calculus, the existence of n +2 points, which are either x =a or x = b, or
satisfy f'(x) = P;(x) where |f(x)— P,(x)| attains its maximum (see [1-C, p.
284, Theorem 2]). Theorem (1.2) has been gradually developed since then.
There is also a different condition of Kolmogorov (see [0-L, p. 18]) which
characterizes the polynomial of best approximation. It is much less concrete
than (1.2), but implies this condition. Its advantage is high flexibility: It can
be adjusted to characterize the best approximation in many other cases. For
the practical determination of the polynomial of best approximation we
have the famous Remez algorithm.

It is very hard to pinpoint the polynomials of best approximation of
a given function. The best example that we have is this. If

00
()= X alp(x),  Xlay|<+eo, (1.3)
k=1
where the C, are Chebyshev polynomials, then all polynomials of best
uniform approximation of f are the partial sums of the series (1.3).
Because of this difficulty, many concrete questions about polynomi-
als P, of best approximation have not been completely answered. For
example, is it true that f € C[—1,+1] is odd if P,(0)=0, n=0,1,...?
(Partial affirmative answers are given by Saff and Varga [1-S,].) Or: What
can be the highest multiplicity of 0 as a root of P,? (It can be > const. logn
for infinitely many n; see [1-L].) A peculiar question has been answered by
Borosh, Chui, and Smith [1-B]. We approximate x"*' by a polynomial

s
Pn(‘x)= Z akx)\k
k=1

of length 5 < n, where the A, are integers < n. Which selection of the A X

prod.uces best results? The answer is that one should take the A, as close as
possible ton; A, ., =n—i,i=0,... 5-1. ¢
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- Sometimes best approximation is unique even for infinite-dimen-
sional subspaces. Diliberto and Strauss show this for f(x,y)€C(/ 2),
I =[0,1], approximated by functions g,(x)+ g,(y), g € C(1), i =1,2. How-
ever, generalizations of this theorem proved to be difficult (see papers of
Cheney, v Golitschek).

It is impossible to achieve the exact degree of approximation E}( f)
by means of a linear polynomial operator on C*. But one can hope for
approximation of order < const. E¥(f). This can be realized, both for C*’,
r=0,1,... (by means of the de la Vallée—Poussin sums) and for the space
A*, 0 > 0, of periodic functions f(z), analytic in |Rez| <o and continuous
on the boundary (by means of Fourier partial sums). However, it cannot be
done by the same opgrators for both spaces at once (Dahmen and Gorlich
(1-D)).

In 1937, Bernstein coined the term Chebyshev system for a set of
linearly independent functions g,...,g, on [a,b] or T, which has the
property that polynomials P, = ¥{a, g, interpolate arbitrary data c; at any
set of distinct points x,, i=0,...,n. In other words, the determinant
det[g,(x,)] x~o must be =0, let us say >0, for each selection of points
X <---<x, Instead of the Lagrange interpolation, we can take Hermite
interpolation here, and obtain the extended Chebyshev systems [0-K,]. Very
important is Haar’s theorem (1911) that {g, ) is a Chebyshev system if and
only if each continuous function has a unique polynomial of best approxi-
mation. The book of Karlin and Studden [0-K ] treats Chebyshev systems
exhaustively; Zalik and Zielke (see [1-Z]) also allow discontinuous Chebyshev
systems. Newman and Shapiro [1-N,] show that for each Chebyshev system
and each f € C one has, for the polynomial P, of best approximation to f,
and any other polynomial Q,,

If =@l = 1S = PlI+ Y12, — B, (1.4)

where y=1v(f) >0 is a constant. This is the so-called strong uniqueness
theorem. Many authors (Bartelt, Henry, Roulier) have studied the behavior:
of the constants y (see, e.g., [1-H]). ,

A weak Chebyshev system is defined by means of the inequality
det[g,(x))]>0, x,<--- <x,. In important papers, Niirnberger and
Sommer have studied these systems in great detail. We give one of their
results [1-N,]. For a weak Chebyshev system, some functions f € C may
have several P, of best approximation. These P, form a compact convex
subset 7( f ) of the (n + 1)-dimensional space G spanned by the g,; the map
f—7n(f) is called the metric projection. The property of being a weak
Chebyshev system is necessary for the existence of a continuous selection,
that is, of a continuous map f — P,(f) of C onto G, with P,(f)€ n(f) for
all f. See [1-S,] for literature and other problems.
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A related notion is that of total positivity. A function K(x, y), x € X,
y €Y, where X, Y are linearly ordered, is called totally positive of order r
(Karlin [1-K]) if

det[K(x,-,yj)]>O, T Xy Ly, PSS Y 1€kEr
(1.5)

Properties of total positivity are often very useful (used, e.g., in [1-B],
[10-M,], [10-M,]); at other times it is difficult to compute all the determi-
nants contained in (1.5).
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§2. MODULI OF SMOOTHNESS; SPACES (iFvFUNCﬂONS;
DEGREE OF APPROXIMATION

2.1. Classical Quantitative Theorems

The quantitative theory is the main part of approximation. Here we
want good approximation, not the best, mainly because we are seldom able
to find the elements of best approximation. In this sense, “best is the enemy
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of the good.” The two main theorems of the quantitative theory are those of
Jackson and Bernstein. The first asserts that the degree of approximation
EX(f)=mins cq|lf = T,ll, satisfies

EX(f)<Cnw(f0,1/n) (2.1)

if f € C*". [C" is the space of r times continuously differentiable functions,
w(g,t) is the modulus of continuity of g; the asterisk means that the
functions are on the circle T.] The theorem of Bernstein states that con-
versely, EX(f)<Cn~""% 0<a<], implies that f €C*" and that /(" €
Lipa. To these two, Butzer likes to add as a third element the theorem of
Zamansky, namely, that for f € C*

If = Tllo, = 0(n™#), B> 0, implies |T,||, = O(n*~F), k > B.

Since about 1960, new fields of quantitative theory have
flourished—constrained approximation, Korovkin theorems, Miintz ap-
proximation, incomplete polynomials; these will be reviewed in later sec-
{ions.

But even in this section progress will be evident. New features are (a)
the use of functional analysis (interpolation of linear operators), particularly
the use of the K-functionals of Lions and Peetre; (b) some new spaces (e.g.,
Besov spaces); and (c) problems that refer to two different spaces or to two
norms. In §10. some problems of this type can be solved by embedding
theorems, but the “2-* of them do not allow this reduction.

2.2. Moduli of Smoothness

We say that f(x), x €[a, b], has rth derivative f if f7,... .f¢~ D
exist and are absolutely continuous; then /" exists a.e. For functions of
several variables, one uses distributional derivatives. The moduli of smooth-
ness of f are given by

w,(f,h)=su£)|A’,,f(t)|. r=12,..., (2.2)

where A, f(¢) is the rth difference of f with step 4. The main point in
this definition is that Jackson’s theorem (2.1) allows an improvement:
EX(f)<Cuw,(f,1/n).In the space L, one puts w,(f, h), = sup, ¢ 414, f (),
and also has (2.1).

Other moduli of smoothness have been used by Popov [2-P}; for
instance, 7,(f, h), =||,(f, x; 8)|| ,, where in [a, b],

w,(f,x;8)=sup{|A’,,f(t)],t,t+rh€ [x—%é,x+§]}. (2.3)

This 7, plays the same role in the one-sided approximation as w,-in the
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ordinary Jackson theorem. The one-sided degree of approximation of f is
&,(f) =inf{|B, = Q,lI: P,(x) < f(x) <Q,(x),a<x<b) (24)

where P, Q, are two polynomials of degree < n.

2.3. Basic Function Spaces

The basic spaces of functional analysis are C, L,(1 < p < + ), the
Orlicz spaces and the Lorentz space L,,. For f defmed on a finite or
infinite interval, let f* be the decreasing rearrangement of |f|, and let
f**(t)=1""J5f*. The space L, is given by the norm

dt
1/l g = U (r7rfex)? 2 } . l<g<+w, (2.5)

(with the ¢ norm replaced by sup for ¢ = + o). This is Calderdn’s defini-
tion. The original definition [2-L] has f** replaced by f* in (2.5). For
1<g<p<+oo this is equivalent to (2.5), but is not a norm for other
values of p, ¢.

2.4. Besov Spaces

The spaces needed in the approximation theory are derived from
these by applying their norm to the important quantities 7, w(f, h)/h",
w,(f, h),. In this way one obtains spaces Lip(e, p) = H, for which w(f, h),
< Ch®, spaces H with w(f, h)<Cw(h), where w is some fixed (often
concave) modulus of continuity. By W’'E we mean the space of functions f
with f(€ E. The spaces W, (often called Sobolev spaces) consist of
functions f with (" e Ly Fmal]y, if we apply to ¢ 'w,(f, t), the L, norm,
taking 1—(1/s) =4, and the original definition (we almost have that o
is positive decreasing, for w, is often concave), we obtain the Besov spaces
B}, 6 >0, with the norm

[ 14+
o= 0+ [ (% 1.0,) %]

, r=[8]+1. (2.6)
(If g = + o0, the g norm is rcplaced by the supremum norm.)

We shall mention a few facts about Besov spaces. The space B,f’ «
with 6 =r + a, is equivalent to W’'H®; and if 0 < 0 <1, then B” ® s the

space Lip(4, p). One also has the embedding for 1< s < + o0,
: 1 ;
B,;”""%B;l" if I<sp<p,<+o0, 6: ———i (2.7)
PP

The Hardy spaces H,, and BMO, are also important in functional
analysis. The latter has not yet been discovered by approximation theorists.
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2.5. K -functionals

Interpolation of operators appears in approximation theory mainly
in. the Peetre form, which is based on K-functionals. A definitive first
exposition of this theory was presented in the important book of Butzer and
Berens [0-B,]. Based on this, and the semigroups of operators, the Aachen
school of approximation flourished. Compare Butzer [2-B;] for an exposi-
tion of their results until 1973.

Taking the special case, let X, = X be two Banach spaces with a
continuous embedding. The K-functional of the spaces X,, X is the function
of 1,

K(f,t,Xl,X)5=gi2£{ {(1f —gllx+tlglly), >0 (2.8)
1

There is a standard way of generating intermediate spaces between X,, X by
applying to K( f, ¢) one of the norms of type (2.5). In this scheme, the Besov
space Bp"" is intermediate between W, and L,.

One of the reasons why the K-functionals are important is the fact,
discovered by Johnen [2-]J] and Peetre, that they are equivalent to the
smoothness moduli:

Coo,(f,0), <K(f,1 W), L) < G, (1), (2.9)

This allows us, in proving theorems of the Jackson type with w,, to assume f
to have several derivatives. See DeVore [2-D] for an exposition of the
approximation theorems from this point of view.

2.6. Jackson-type Theorems

What is new in theorems of the Jackson type? A function fon T
belongs to B,f"". 0 < r, if and only if (Besov [2-B,])

2 (2°7E2.(£))? < + oo.

The influence of the end points in polynomial approximation has
been clarified. Timan and Dzyadyk show that f € W'H®[—1, + 1] if and
only if for some P, € ¥,

If(x)=P,(x)|<const.A, (x)" % A (x):=n2+n W1—x2.
(2.10)
There is a corresponding result with w,. Here, the difficult inverse theorem is
due to Brudnyi [2-B,]. The peculiar fact that (2.10) remains a necessary and
sufficient condition if A, (x) is replaced simply by n~ 'V1— x? has been
observed by Teljakovskii (see [2-T]). Theorems like (2.10) are also valid in
the L, norm (Oswald [2-O]). In the paper of Butzer and Scherer [2-B,].



