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PREFACE

This volume was conceived as the proceedings

of a conference on surgery theory held at Rutgers
i et

T e _ -

University in July, 1983. The”eéitors have taken the
opportunity to considerably expand the subject matter.

The articles in this volume present original
research on a wide range of topics in modern topclogy.
They include important new material on the algebraic
K~theory of spaces {(Waldhausen, Vogell), the algebraic
obstructions to surgery and finiteness (Cappell and
Shaneson, Milgram, Pedersen and Weibel, Ranicki,
Sondow) , geometric and chain complexes (Davis, Quinn,
Smith, Weinberger), characteristic classes (Levitt),
and transformation groups (Assadi and Vogel).

A paper of J.Levine on homotopy spheres, written
in 1969 .as-the sequel to the classic work of Kervaire

and Milnor but never published, is also included.

Andrew Ranicki
Norman Levitt

Frank Quinn

November, 1984
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SEMIFREE FINITE GROUPS ACTIONS ON COMPACT MANIFOLDS

A. H. Assadi(¥*) P. Vogel

Department of Mathematics Institut de Mathematiques
University of Virginia et d'informatique
Charlottesville, Virginia 22903 Université de Nantes

UsA 44072 Nantes

Cédex, FRANCE
INTRODUCTION

One of the classical problems in transformation groups has been
to study the properties of the stationary point sets of actions on
manifolds, and to characterize them whenever possible. P. A. Smith
theory in combination with various other topological considerations
provide a number of necessary conditions to be satisfied by the
stationary point sets of some restricted classes of actions. 1In the
case of smooth actions of a compact Lie group G on a manifold W, the
stationary point set, say F, is a manifold and its normal bundle in
W, say v, is a G-bundle which determines the action in a {(tubular)
neighborhood of F.

For a complete characterization (of the diffeomorphism type) of
F, one needs to show that the above mentioned necessary conditions are
sufficient as well, in the following sense. Assuming that the sub-
manifold F of the prescribed manifold W, and the G-bundle v given, one
tries to find an action on W which would restrict toc the given action
in the tubular neighborhood of F provided by the G-bundle v. Special
cases of such problems have been considered under various circumstances
by various authors: {711, fJ231, I[All, [A2], [A3], [A-B 1], [A-B 1],
[L), [D-R], [S] to mention a few. In these and other related contexts,
a common hypothesis is that W is simply-connected and this assumption
is indispensable for the techniques and the arguments to be applicable.

In the following, we consider this and some other relevant ques-
tions in the case of non-simply connected compact manifolds on which a

' i.e. where action is

finite group G has a "simple semifree action,'’
free outside of the stationary point set, and a certain localized

Borel construction becomes fibre homotopy trivial. Although semifree
actions comprise a restricted class, their understanding seems essential
in developing general theories with more complicated isotropy group
structures. The further restriction of "simplicity"” of actions has been

imposed to bring the homotopy-theoretic constructions and algebraic

(*) Partially supported by an NSF grant.




calculations within reach, as well as to provide a satisfactory answer
to the above-mentioned guestions in the form of less-complicated nec-
essary and sufficient conditions.

In the presence of the fundamental group of the ambient manifold —
on which the desired G-action is to be constructed — much of the
methods and results of the simply-connected cases (in their various
forms and contexts) are inapplicable. Thus, one is led to construct a
1W and G)
whose vanishing is one of the necessary conditions for the existence

new obstruction group and a new invariant (depending on both 7

of such actions. The obstruction group fits in a five-term exact
sequence relating various Whitehead groups, and conceivably it can be
defined as the fundamental group of the fibre of a transfer map between
two Whitehead spaces involved in the problem, although its definition
given below is in purely algebraic terms. The above-mentioned invariant

is related to a certain Reidemeister torsion-type invariant.

IfTm=1, Wh? becomes simply K This functor takes into account

0"
the interaction between RO (the finiteness obstruction in the presence of

G-actions) and Wh1 (the Whitehead torsion involving the fundamental

group m; = m) in a way which is necessary to study the above mentioned
problems. Thus, in the geometric context, WhT plays the same role in

the study of finite group actions on non-simply connected compact mani-
folds that RO does in the simply-connected case.

The organization of the paper is as follows. In Section I we
introduce WhT and state some of its algebraic properties which are used
subsequently to detect the (combined) finiteness and Whitehead torsion
type obstructions as the image of a Reidemeister torsion type invariant.
Section II illustrates some computations of Wh?. (The details of the
resulﬁs in these sections will appear elsewhere.) Section IIT considers
semifree simple actions and gives necessary and sufficient conditions
for existence of simple actions in this context. The problem of char-
acterization of the stationary point sets of simple semi-free actions
on compact bounded manifolds and an extension theorem for free simple
actions are reduced to the homotopy theoretic problem of constructing
appropriate Poincaré complexes, which are carried out using mixing the
localizations of diagrams of spaces involved. Section IV gives an in-
dication of the proofs of the theorems of Section III. Section V gives
some useful theorems on constructing free simple actions either by ex-
tending a given action on a subspace or by pulling back actions from a
given space, thus formalizing and generalizing the constructions needed

in Section III. Although these are non-simply connected versions of



analogous results in [A2] and [A3] where free actions are constructed
from homotopy actions on simply-connected spaces (which are not simple
in general), there is little overlap in scope or the methods.

There is somewhat of an overlap between some of the results obtain-
ed independently by S. Cappell and S. Weinberger [CW] as well as S.
Weinberger [W], P. Loffler [Ll, P. L&ffler and M. RauBen [LR]. The
pé_pers of L. Jones [J] and F. Quinn [Qu] also deal with related problems.

SECTION 1. Let A be a ring and pP(A) denote the category of finitely
generated projective A-modules. In the sequel, G will denote a finite
group, and 7 a discrete group which denotes as well the subgroup

1 x{1) « 7™ xG for simplicity of notation. Consider the set

A= {(p,B)|P €P(m (n xG)), B = Zmn-basis for P}. The operation of
direct sum of modules and disjoint union of % m-bases in the given
order gives A the structure of a monoid with neutral element (0,8).

We introduce the equivalence relation (p,B8) ~ (P',B') among the elements
of A if there exists a Z (m xG)-linear isomorphism a : p=+P' such that
TT;(u) = 0 with respect to B and B', where T o) <5Wh1 (r) is the White-

héad torsion. The set of equivalence classes A' = A/~ inherits the
monoid structure of A, and contains the submonoid "of trivial elements™;
namely, (P,B) represents a trivial element in A' if P is Z (n x G)-free,
and B is induced by a Z (m x G)-basis. The quotient monoid A' modulo
the submonoid of trivial elements is seen to be an abelian group and is

denoted by Whr{( TemwxG). We have an obvious homomorphism

] Wh? m = mxG)— ﬁo(zz (1 xG)) induced by the forgetful map

(p,B)—P e.’f(o(z (T xG)). There is a further homomorphism

B : Whl(‘lT)—'—*Wh'{('ﬂ = m xG) which is induced by the operation of "twist-
ing the standard basis;" namely, let x eWhl(TT) be represented by

o : (Z n)n—+(2z 1r)n After stabilization, we have a w-linear homomor-
phism ¢ @ id : (Z (7 x G) (zz (nr xG)) Let B be the image of the
standard basis of (Z (n xG)) under the Z7n- linear map ¢ ® id. Then
B is a %7 -basis for (Z (7 xG))™ and ((Z (7 ><G))m,B) represents

Bi{x)e Wh'{('rrt:'rr x G).

1.1 Theorem. There is an exact sequence

Tr B T o tr
Whl(n x G)——*Whl(ﬂ)—-—»Whl(vr o7 XG)‘—"WhO(TT x G)———»Who(n)

in which Tr and tr are transfer homomorphisms and Who = KO'




The homomorphism Zn -2 q1T induces a homomorphism

dgf
Whl(ﬂ) —-»Whl(n,zz q) =

KI(Z qv)/{tw} where qu = % /qZ . One has a

further map vy : Whl(n;mq)—» whr.f(n o7 xG) defined as follows. Let
1

GLn(Z T) be the monoid of (nxn)-matrices which have an inverse in

1
GLn(ZZ qn) . Given ¢ € GLn(Z m), one has an exact sequence

©,) : 0— (Zzm¥— (Zzm) —M—0

Thus Mq =M Z q = 0. It follows that proj dimZZ (m xG)M < 1, and we
may take a short projective resolution over Z (I x G) for M, where order
(G) = qg:
1 A 1
(Cy) : 0—>C1—>C0—-—>M->0

T L
such that C; is free and C, is projective over m xG. There is a

L]
% T-linear chain homotopy equivalence ¢ : C, +~C,. Since the finite-
1
ness obstruction of C, over %= vanishes, C, is stably trivial over Zw

1] 1 L]
also. After stabliization, we choose Zw-basis for C1 and CO' say Bl
v
and By- If we choose the "standard bases Bl and BO in the resolution
(C4) above for C1 = (7 Tr)n and CO =z (Z TT)n, then it is possible to

] ]
arrange for the choices of Bl and BO so that becomes a simple homo-

L} 1 1 L}
topy equivalence over Zm. Let y(¢$) = [(cl’Bl)] - [(Cl'Bl)] in
Wh’f(n 7w xG). In general, for ¢ eGLn(an), we take ¢ = %\p, where
1 1
(s,9) = 1. Then s(Id) e GLn(Zz m) and ¥ € GLn(Z m™ .

Let y(¢) = y(s(Id)).

I.2. Theorem. vy induces a well-defined homomorphism such that the fol-
lowing diagram commutes

Wh, (m) > Whi (1 7 x G)
canon. Y
Whl(W;Z q)

Suppose C, is a chain complex over Z m such that H,(C,8Z gq) = 0. Then
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the Reidemeister torsion of C, is a well-defined element of Whl(n;z<;)
and is denoted by t(C,). The main algebraic result of this section is

the following:

1.3. Theorem. Let A; be a finite Z n-based chain complex, and A, be a
finite Z (m x G)-based chain complex. Suppose there exists a Z m-linear
map f:A;——»A* which is a #Z m-chain homotopy equivalence. Further, sup-
pose H,(A ® Z<q) = 0 and that G acts trivially on H, (A), where order
(G) = g. Then there is a finite % (m x G)-based complex B, and a

Z (m x G} -chain homotopy equivalence h:A, - B, such that hf:A, » B, is
m-simple if and only if ¥ T(A,)) = 0.

The above algebraic theory has the following application which is
crucial in the construction of surgery problems of the next sections.

1.4 Theorem. Suppose we have a commutative diagram

o<~ __
~—

w
[P ———
M — X2
o

with the following properties:

i) X,Y and Y are finite connected CW complexes, and X is a con-

nected CW-complex.

i) m X)) = w () =, (X) = m(Y) = TxG.

iii) Y is a covering space of Y and o induces a homotopy equiva-
lence from X to the covering space of X with the fundamental group 7.

iv) H*(i,§;z(q[n]) = 0 and the Reidemeister torsion of (X,¥) is
T(X,Y) in Why (T2 ) -

v) G acts trivially on H, (X,Y);Z [n]) = H, (X,¥:;2Z [ xG]) .

Then there exists a homotopy equivalence from X to a finite com-
plex Z such that the composite map X—% X — 7 induces a simple homo-
topy equivalence from X to a covering space of Z, if and only if
y(t(X,¥)) = 0.

Indication of Proof: Let us denote by C,(-;M) the cellular chain com-

plex with (twisted coefficients M. We have a m-linear homotopy equiva-
lence f : C,(X,¥;Z m)— (C,(X,¥;Z [t xG]). If there exists such a %,
then we have a T-simple homotopy equivalence




2

CalR,¥:Z 1)——Cu(2,Y;% [1 xG])

from a finite m-based complex to a finite m x G-based complex. Hence
by Theorem 1.3, Y(T(X,¥)) = 0.

Conversely, suppose that Y (t(X,Y¥)) vanishes. Then there exists a
finite 7 X G-based chain complex B, and a T x G-homotopy equivalence g
from C, (X,¥;%Z [7 xG]) to B, such that go f is m-simple. This implies
that the finiteness obstruction of X vanishes and there exists a homo-
topy equivalence from X to a finite complex ﬁl. Moreover, we can add
2-cells and 3-cells to z, in order to modify the simple type of Z1 to
obtain a finite complex Z such that the composite map

-1
B*—i———*c*(X,Y;Z [mxG))—C,{%,¥;Z [r xG]) is a 7 x G-simple homotopy
equivalence. It is easy to see that the composite map ¥ +X +Z induces.
a simple homotopy equivalence from X to the covering space of 2 with

fundamental group 7.

SECTION II. Let A = Zm and w = } g be the norm of G. For simplicity
g G

of notation, let A[G]/wA[G] = A[G)/w,A/qgA = Aq, and

Z/2Z x M = {+1,-1} xM
diagram:

1

tM for any group M. Consider the cartesian

h
Al[G] A[G] /w

£ ()

A —> A
q

where f is the augmentation and all other homomorphisms are cannonically

defined quotient morphisms. The associated Mayer-Vietories sequence is:

K, (A[G] )—-»Kl (A)$K1 (A[G] /w)—-—-»K1 (Aq)—> Ky (A[G])—
(MV)
K, (a) 8K, (A[G] /w)}—r K, (Aq)

Corresponding to (MV), one has the following exact sequence if G #% 2

(U) O—+tH1(ﬂ)xH1 (G) =~ iHl(Tr)aiHI (TT)XH1 (G)=— iHl (Tr)—q-rzz—-»-zz ® ZZ—~+Z—=0
and if G = Z 27 the sequence reads:

0—+iH1('n)le(G)—-*iHl(1T)$H1(1T)><H1(G)—>H1(1T)—O—>Z->Zz ® Z—T —0



'

The sequences (Uf and the correspohding homomorphisms are also obtained
from the diagram (C). The sequence (U) admits an injective homomor-
phism into the sequence (MV) and the quotient sequence is the exact
sequence of the Whitehead groups below:

Why (7 x G)—Why (1) @ K, (A[G]/w)/£H, (m) x H (G)—> Wh, (n;2 q)——ao

Ky (AIG])— K, (R) ® KO(A[G]/w)——’KO(Aq)

For simplicity of notation we write this sequence in terms of Whitehead

groups (by a slight abuse of notation)

Wh, (A[G])— Wh, (A) @Wh, (A[G]/w)—> Why (A )~ Wy (A[G])

(W)
Wh (A)8Wh, (A[G]/u)— Why (2, )

The boundary map 8 in the sequence is related to a generalization of the
Swan homomorphism (Zq)x—ﬁjko(z G) in the case of m = 1, (cf. [Sw] or
[M]1). We continue to call 3 the Swan homomorphism.

Let a and vy be as in Theorem I.1l. Then the Swan homomorphism is
-gey. To see this, let erhl(Aq) correspond to the isomorphism

¢ (Aq)n——*(Aq)n induced by the (injective) homomorphism ¢ : A"t am,
As in Section I, it follows that in the exact sequence
0— A" — A" M— 0

one has proj dimAG(M) < 1. Thus one has the commutative diagram:

0—s a2 At s m—0

| e ] 1]

0 —K—E A[G1BaM—s 0

where (£)" is induced by the augmentation f. Thus ay([¢]) = - [K] and
the problem is reduced to show that the following diagram is cartesian:

K B (A[G]/w)®

A (v®

(o? s

A (a/q)—(a/q)"




(Recall the definition of 5 in the Mayer-Vietories sequence; cf. [M]
e.g.}). Since Ker) = Ker (f})® = Ker (v)™ and (f)nou = ¢o), one has the

diagram:

] 0 0

N

KerA—————i————-—rKer(f)rl——————f-———-—>Ker(\))n

m I

Ro—

> (A[G] /o)™
\A[G]n /(h)n7 ]
l _ (v)
n b n 4) n
A" ——————(A/q) — > (a/q)
-
) (p)

obtained from diagrams (B) and (C) above, and in which $o(p)no A=

(% dpor = (0% (E)eu = (M Te(n) o = (V)T §. Thus (B) is

cartesian.
Next, we identify the transfer.Ti : Whl(A[G])——>Whi(A) , 1i=20,1

in the 5-term exact sequence of Theorem I. Consider the diagram:

AlG] — P+ AlG]/w

£ l 8 v

P R
A A
q

where § is the composite A——A x{1}—— AG—— AG/w so that vod = p.
Let p e P(AG) be given and tensor P over AG by the diagram (C) to obtain

the cartesian diagram:

p———P'

L

Po ———— Po/qPo

Thus one obtains four functors from P(AG) to the categories P(A[G]),
P(A[G]l/w), P(A), and P(Aq). The above cartesian diagram yields the

commutative diagram:



0 P P, 6P’ +P,/qPg 0
[ l 140 ] 1
0 P, Po —+ Po/qPo ——— 0
(+)xg

which yields the exact sequence:
0—+ Po — P®Po —* Po@®P'—— 0

The above sequence defines, in fact, a short exact sequence of the cor-
responding functors due to the functoriality of all the above construc-
tions. It follows from Quillen's theorem on the additivity of functors
(c£.[Q]) that the functor P—P®Po is the sum of functors P —— Po

and P— Po®P', which in turn implies that induced homomorphisms on
K-theory satisfy Tr = £, ® tr h,, Tr : K,(A[G))— K, (A) and

tr : K, (AG/w)— K, (A) are transfer homomorphisms. Thus on the level of
Whitehead groups, one has the following:

II.1 Lemma. Let T, : Wh; (A[G])— Whi(A) and t; : Whi(A[G]/w)—-*Whi(A)
be transfer homomorphisms. Then T, = f, & tih*’ where f, and h, are
induced from diagram (C) above.

Let Py S Py Whi (A)— Whi(A)——» Whi (Aq). Specializing to the case

G =2 the above calculation is continued to show

2'

2p
II.2 Lemma: The sequence Whl(Tl’)——l—*Whl('!T7z 2)—I->Wh']I:(‘nc:‘rr><ZZ 2)——»

— Kerp—0 is exact. In particular Kery = Im2p.
-]

This characterizes completely the obstructions which are discussed
in Section I in terms of the Whl(TT) and the mod 2 reduction

Whl(n)—-» Whl(n;z 2) . To obtain examples of nontrivial obstructions,

let m = 2 g* Then computations show

=z 7ZZ

wh (ZZS;ZZ) =

1

T =
II.3 Corollary: Whl(ZZ8 cZBXZ2)= Z.,®2Z,86%Z, 8%, and kery

consists of the 2-divisible elements of Whl(Zz 8;ZZ 2) .
Although Whl(z 5) = 7Z , one can show that in the case 1 = Z 57

G=2 all the obstructions wvanish.

2’
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kY]

Z 5 and Im(y) = 0.

I1.4 Corollary: Wh (Z o Z 2)

Remark: In [Kw] Kwun has shown that the transfer Whl(E 2>< Z%)-—*
Whl(z r) is onto if and only if r = odd or r = 2,4,6. We thank the

referee from bringing Kwun's result to our attention.

SECTION III. Let X be a finite dimensional CW complex with nl(x) =7,

and let G be a finite group of order g acting semifreely on X - i.e.
the action is free outside of the stationary point set. In general,
there is no explicit relationship between H, (X} and H*(XG). The rather
implicit information obtained using the localization theorems of
Atiyah-Borel-Quillen-Segal type does not seem sufficient to yvield a
satisfactory characterization of the stationary poiﬁt set XG under
general hypotheses. In the sequel, we will consider a class of actions
which are encountered often in the geometric considerations, and to
which it is possible to apply the present techniques of algebraic
topology to obtain rather precise information and characterizations of
xC. ‘

Given a connected space X and a subring of rational numbers A or

A= ﬂ:q we denote by X, the localization of X which preserves ﬁlX and

., (xA =y (X) ® A for i > 1. For instance Bousfield-Kan's localiza-

tion [B-K] applled to the universal covering space X yields xA on

which wl(x) operates freely and X——»XA is equivariant. Then X, can be
. 3 - - = 1

defined as XA/nl(x). For A = Z(;’ AN=Z (q) and A = Z [q] we can use

the notations xq, (q) and X( ) respectively.

The key observation to reconstruct a space (respectlvely a diagram
of spaces) from its localizations (respectively its diagrams of locali-

zations) is the following:

III.1. Lemma. For any connected space X the following diagram is

cartesian:

Proof: Since H*(xq,x;z /qimr]) = 0 it follows that H*(xq,x;z ™) is



Z [%]—local. Hence the (homotopy) fibre of f is Z [%]-local (CEf. [s]).
Since the (homotopy) fibre of f£' is also % [é]—local, f and £' has the

same fibre (up to homotépy).

Definition. Let X be a connected G-CW complex, where G is a finite
group of order g. X is called a simple G-space (and the action is
called simple) if (EGxGx)q is fibre homotopy equivalent to (BGxx)q.

For instance, if X has trivial mod q homology, then any G-action
on X will be simple, or if X has the mod g homology of a sphere and
x© # @, the X-{point} has a simple action if we take out a point from

xC.

Proposition. Suppose G is a finite group of order q which has a simple
semifree action on the finite dimensional complex X with wlx = m. Then

H*(X,XG;Z(fw = 0, where the homology has local coefficients.
In the case of semifree simple actions on compact manifolds, one
obtains further restrictions imposed on xC. For simplicity, let us

consider the case of a smooth semifree G-action on a compact manifold

‘ W with T,W = T. Then the stationary point set WG = Fk is a submani-

fold with normal bundle v which is a G-bundle with a free G-representa-
tion at each fibre. Assume that n-k > 2. We identify the total space
of the disk bundle D(v) with a closed G-invariant tubular neighborhood
of F. Let c" = w-interior D(v). One can choose an appropriate CW
structure for W so that W, C, and D(v) become G-CW complexes, and var-
ious cellular chain complexes have preferred bases. If the action is
simple, then H*(W,F,z(fﬂ = 0, and G acts trivially on H,(W,F;Z 7), as

well as on H,(S(v) ;% [%] (M) = H,(S(v)/G:Z [%1 (nxG)). One further

observation is that the geometry provides us with the dotted arrow in
the following diagram in which 7 = nl(w):

71 (S (V) /Gremmm oo

)z

T, (S(v))

For a pair (W,F) as above, we define an element w (W, F) eWh (rem xG)
as follows. Given a free finite Z m-based chain complex @*,A ) and a
free Z G-resolution R, of Z , we form the Z (1 x G)-complex A, = A ® R,
~which is z m-chain homotopy equivalent to Ax. Suppose Hx (g © Zq) = 0.




12

Then by theorem I.3 there is a finite Z (7 x G)-projective complex B,

L}
with a m-basis B such that (B*,B ) is ﬂ~51mple homotopy equivalent to
) 1
(Ay,A ). Define w(A*,A ) = 1(-1) [Bi'Bi] € WhT (T= mxG) which is seen

to be well~defined. ©Now let A* be the Z m-chain complex of cellular
chains of (W,F) with local Z m-coefficients and let R be the natural
preferred bases provided by the cells. Then w(W,F) = w(A*,R ) is well-
defined. From section I, one can compute that w(A*,R') = YT(A*).

III.2. Theorem. Let ¢ : G x W'~ W" be a smooth simple semifree action

with Fk = WG, n-k > 2, and v = normal bundle of F in W, 7 = wl(W).

Then:
1) H,(W,F5Z 7)) =0,
2) G acts trivially on H,(S5(v)/G;Z [é](ﬂ xG)),

3) there is a homomorphism t: making the following diagram commute:

Trl(S(\))/G-——-l——->1r

I

ﬂl(S(V))

4) w(W,F)e WhT(ﬂ < mxG) vanishes.
Since C*(Cn,S(v);ZZﬂ) is Z m-chain homotopy equivalent to Ce(W,F;Z n),

one verlfles that ©(W,F) is defined under the following more general
situation: F = W' is a submanifold with normal bundle v, n-k > 2, and
v has G-bundle structure with a free representation on each fibre, and
conditions (1) and (3) of Theorem II.2 are satisfied for (W,F).

The main results of this section are the following two theorems.

ITI.3. Theorem (Characterization of stationary-point sets of simple

actions).
Let W" be a compact manifold with connected boundary such that
nllaw) = ﬂl(W) = 1, and let (Fk,BFk)cr(W,aw) be a smooth submanifold

with normal bundle v, n-k > 2, n > 6. Then there is a smooth simple
semifree G-action on W® with (Wn)G = F if and only if F:

1) v admits a G-bundle structure over F with a free representa-
tion on each fibre.

2) H*(W,F;an) =0,

3) y1(W,F) eWh?(-rr cm X G) vanishes.



