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Preface

HOW WE GOT FROM THERE TO HERE

by

S. Feferman



Preface: How We Got from There to Here

This preface begins with a statement of our main results, in a form suitable
for specialists. However, the reader unfamiliar with proof theory and subsystems
of analysis will find following that, a gradually unfolding informal explanation of
the necessary background which will allow him or her to gain an appreciation of our
project as a whole. This accompanies an account tracing developments over the last
20 years, of which the present results are the culmination. We hope that this re-
view will also be of interest to the specialist for putting the work presented here
in perspective. The preface concludes with an outline of the contents of the
successive chapters. Of these, Chapter I fills in all details of background, so
that the work can be read independently of the research literature. (The speci-

alist will find that Ch.I can be skimmed or even skipped.)

The idea for the present volume originated in 1977, during which year each
of my co-authors had completed a dissertation on the proof theory of iterated in-
ductive definitions: Wilfried Buchholz and Wolfram Pohlers in their Habili tatioas-—
schriften at Munich under the direction of Prof. Kurt Schﬁtte and Wilfried Sieg in
his Ph.D. thesis at Stanford under my direction. Following different paths, they
had obtained related but in many respects complementary solutions to most of the

then outstanding problems in the theory of iterated ID systems (IDv i3

(1) Supplying the final (previously missing) links in a program for reducing cer-
tain subsystems of classical analysis to constructive systems; and

(2) obtaining exact proof-theoretic (ordinal) bounds for the IDv for arbitrary wv.

Among the main results of (1) is that

1)° (Z;-AC)E IDi< eo(@) = 1, (1G M),

where IDi:e (6) is the intuitionistic theory of the constructive ordinal number
o
classes @ iterated through all ordinals v <g¢,, and T, (IGF) is a subtheory

of my constructive theory T, of functions and classes obtained by restricting the



inductive generation scheme. (The relation = is that of proof-theoretic equiva-

lence.) Among the main results of (2) is that

o i -
(2) |z | = 1D (6)] = eeﬂv+lo.
These results will be described in more detail below and compared with previous
knowledge. An interesting variety of methods going beyond predicative proof theory
were employed to achieve (l)O and (2)0. While some of the technicalities were

quite complicated, they had been made manageable by systematic organization.

The situation as I saw it at the end of 1977 was as follows. On the one hand,
a phase in the proof theory of impredicative systems had been dramatically brought
to a close by this work of Buchholz, Pohlers and Sieg. The problems (1) and (2)
had been grappled with since 1967, and the results finally obtained were conclu-
sive. In the process, our understanding of the ins and outs of theories of in-
ductive definitions had advanced significantly. On the other hand, one did nct yet
feel that the methods employed had been brought to a definitive form, at least com-
parable to those of predicative proof theory. It was expected that this might still
require a good deal of further research, aimed at making the methods more concep-
tual. For example, certain collapsing functions in ordinal notation systems played
a crucial role in (2)O , but one had no clear (canonical) meaning for them. Finally,
there were open problems that one could hope to attack by an extension of the
methods developed but which would require significant additional effort. Foremost
among these was the question of finding the proof-theoretic ordinal of Z;-AC-+BI
and that of my conjecture that E;-AC+—BI is reducible to To (the converse re-

duction having been easily established).

It thus seemed to me to be an opportune moment to present the work of Buch-
holz, Pohlers and Sieg side-by-side in the spirit of comparing and disseminating
approaches and results from an ongoing enterprise, a kind of laboratory of proof-
theoretic methods. Moreover, the format of the Springer Lecture Note Series seemed

ideally suited for such a cooperative venture. As I saw it, only an additional



introductory chapter explaining the background and the common resources of the later
chapters would be needed for the general reader; this Sieg and I offered to supply.
The proposal was enthusiastically agreed to by all involved. 1In fleshing out the
plan, it was decided to incorporate further closely related unpublished work of
Buchholz, Sieg and myself. Even so, it looked reasonable to put a target date of

one year for completion of the project.

In fact, it has taken four years from its original conception to bring this
work to publication. The reason is quite simple: none of us could bear to let
things stand as they were in 1977. FEach felt impelled to make improvements, tech-
nical and/ or conceptual. Indeed, in Pohlers' case, this led to the development of
a major new method, which he calls that of '"local predicativity.'" The result, all
told, is a much better volume than if we had stuck to our original plan. In the
meantime, the field has not remained still. There have been further important and
interesting relevant contributions (of which some indication will be given below).
Foremost among these with respect to our own project was the solution by Jager and
Pohlers of the previously mentioned problems concerning Z;-—AC-FBI and T, . Des-
pite this, our joint venture had not lost its timeliness, especially in view of the
improvements which had been made. Moreover, many of the reasons for embarking on
the project were still valid. Finally, any significant enlargements of the material
to be included would require considerable additional effort and cost further loss

of time. This explains how we have arrived at the present volume.

As we have said, the reader experienced in modern proof theory can proceed
directly to the meat of the volume starting with Chapter II. TFor the general reader,
enough background is supplied in Chapter I to make possible an independent reading
of the work as a whole. This background can be enlarged and deepened by judicious
choices from the bibliography referred to as one goes along. The following is only
intended to hit the main points of what led to the present work and thus to help

put that in perspective.

The process of inductive definition is used frequently in mathematics and

particularly in mathematical logic. The ubiquitous mathematical example is that of



a substructure of a given structure generated by given operations (finitary or in-
finitary), e.g., of a subgroup of a group or the Borel sets of a space. Examples
from logic are: (i) the derivable formulas of a formal system, (ii) partial func-
tions generated by recursive schemata, and (iii) classes of constructive ordinal
notations. The first two examples are finitary (for ordinary formal systems, resp.

ordinary recursion theory), while the third is infinitary.

Inductive definition is particularly appealing from the constructive point of
view, with its genetic conception of the basic structures of mathematics. A con-
structive theory of countable ordinals (generated successively by countable sums)
was developed by Brouwer 1926. A recursive formulation was set up by Church and
Kleene 1936 and pursued by Kleene 1938. This provides recursive analogues of the
classical (Cantorian) higher ordinal number classes. Modern recursion-theoretic
treatments are given in terms of the Kripke-Platek notion of admissible ordinals;
cf. Barwise 1975. Our main concern here though is with inductive definitions, in
particular those of the ordinal number classes, considered from a strictly con-

structivist point of view (e.g. that of Brouwer or Bishop - cf. Troelstra 1977).

As it happens, the process of infinitary inductive definition has hardly been
applied in constructive mathematics. For one example: Bishop 1967 applied it to
develop a theory of measure using Borel sets. But this was superseded by Bishop,
Cheng 1972 which dispensed with the use of Borel sets and was otherwise simpler.
Indeed, recent investigations (Friedman 1977, Feferman 1979) show that constructive
practice of the Bishop school is far from exploiting any but the most elementary
constructive principles. (An exception of interest is Richman's 1973 treatment of

the Ulm ordinal structure theory of countable Abelian groups.)

It is true that Brouwer's theory of choice sequences has been given a found-
ation by Kreisel, Troelstra 1970 in the theory of one inductive definition, which
is used to generate the class K of (representing functions of) continuous type 2
operations. But the eventual applications of the theory of choice sequences in
mathematical analysis are achieved in Bishop's work by much more elementary prin-

ciples, simply by circumventing the notions and questions which preoccupied Brouwer.



The place where the study of inductive definitions has had its greatest im-
pact is in recursion theory and its generalizations. Here the developments have
been extensive and of a high order; cf. particularly Moschovakis 1974 and Barwise
1975. 1Indeed, the Barwise-Gandy-Moschovakis Theorem analyzes the passage to the
next admissible set over a given one in terms of (first-order) inductive defini-

tions over that set. However, the approach there is highly non-constructive.

The study of formal theories featuring inductive definitions in both single
and iterated form was initiated by Kreisel 1963. The immediate stimulus was the
question of constructive justification of Spector's 1961 consistency proof for
analysis. Kreisel 1959B had extended Godel's Dialectica interpretation to analysis
by the use of continuous (or Kleene '"countable") functionals of finite type. Spec-
tor had refined this to an interpretation in the so-called bar-recursive functionals
of finite type. These were generated by schemata analogous to Brouwer's principle
of bar-induction. The use of bar-recursive functionals of type 2 was indeed justi-
fiable constructively (either directly by Brouwer's principle or by working through
the inductively generated class K above). Kreisel wanted to see whether iterated
inductive definitions (of classes of lawlike operations analogous to K) could
serve to model the bar-recursive functionals of higher type. The conclusion was
negative, since such a theory of iterated inductive definitions was much weaker than
full second order analysis. Indeed, Kreisel thought that even a suitable theory of

transfinitely iterated inductive definitions would not go beyond Z%-—AC.

Proof theory at that time had been pursuing an extension of Hilbert's program,
following Gentzen's lead: to reduce subsystems of analysis to extensions of arith-
metic based on principles of transfinite induction for constructively recognized
ordinals given by "natural" systems of notation. Side results were characteriza-
tions of the provably recursive well-orderings and functions of the systems dealt
with. Speaking loosely, one measured the exact proof-theoretic strength of these
systems in natural ordinal-theoretic terms. This work had been organized most
clearly and elegantly by the use of derivations in an infinitary logic with countably

long conjunctions and disjunctions (Lw ); cf. particularly, Schutte 1951, 1952

17



(or 1960), Tait 1968 (and more recently Schwichtenberg 1977). Here ordinals make a
canonical appearance as a measure of the lengths of proofs as well as of their cut-
ranks. Schutte applied this to measure the proof-theoretic strength of systems of
ramified analysis. This used the Veblen hierarchy of ordinal functions ¢QpB

p and for o> 0, Bap = Bth common fixed

which we here designate 6B : 808 = w
point of all the functions @y for y < a. The process of cut-elimination for
infinitary derivations yields ©Qf as upper bound for the length of a cut-free
derivation d* obtained from a derivation d of cut-rank 5 @ and 1ength f B
FO is defined as the least o with 600 = &. Using the embedding of ramified
systems in the infinitary logic, Feferman 196l and Schutte 1965 independently de-
termined the least impredicative ordinal to be TO - taking the predicative ordinals
to be those generated by an autonomous ramified procedure. For this reason, the
proof theory of systems which can be interpreted in Lwl,m is often called pre-
dicative (though strictly speaking this is so only for ordinals < T Yia

Spector's striking leap to full classical analysis had not been convincing
constructively and had provided no ordinal-theoretic information. The 60's were
taken up with efforts to extend ordinally informative proof theory to impredicative

subsystems of analysis, but starting back at relatively low levels of the analytic

hierarchy. The years 1967-68 constituted a turning point in this program.

First we must say a little more about the systems involved (cf. Chapter I
for full details). &-CA is the 2nd order system with instances of the comprehen-
sion axiom #X Vn[ne X ¢« F(n)] for all formulas F in & . Analogously, &-AC
is a 2nd order system for the (countable) axiom of choice. BI is the principle of
bar induction, which allows us to apply proof by transfinite induction (TI) to any
recursive well-ordering. We are mainly concerned with the systems Hln -CA and
Zj;l -AC for n=0,1 (where l'll

o 1is taken to be I°

l). Using complete I]ln pre-

dicates we denote by (]‘[ln—CA)\) the system with (Hln -CA) iterated v times, and
1 8
(Hn—CA)<\) = L<J (Hn-CA)u.
p<wv

ID:L is any first-order system based on axioms of the following kind:



I. A(PA, x) —»PA(x)

II. Vx[A(B,x) — B(x)] —aVX[PA(X) - B(x)] for each B,

where A(P,x) is arithmetical in P and has P only in positive occurrences.
(The positivity condition assures provable monotonicity A(P,x) AP S P' - A(P', x).)

This formalizes an accessibility inductive definition if A(P,x) has the form

AO(X) AVy[(y,x) e R = P(x)]. In that case PA(X) is interpreted as the accessible
(or well-founded)part of R (hereditarily) in AO . Speaking mathematically, every
accessibility inductive definition is deterministic, i.e. there is a unique "verifi-
cation tree" for PA(X) when it is true. The class 6 of Church-Kleene con-
structive notations is given by an accessibility i.d., and the corresponding theory
is denoted IDl(G). A related class we use is W, the class of (codes of) recur-

sive well-founded trees; its theory is denoted IDl(W). Superscript 'i is used

to indicate restriction to intuitionistic logic, as, e.g., in IDi(@).

The definition of 6 may be iterated into the transfinite in two ways, to
give classes @a. One method replaces '"recursive'" where it appears in the clauses
for closure under limit notations by "recursive in (@b)b < a“. The second method
leaves '""recursive" unchanged but builds in regularity of @a by requiring closure
under recursive limits of @k]-sequences for each b < a. (Mathematically, these
two methods give (ordinally) equivalent results by the work of Richter 1965 and
Belyakin 1969.) We use the latter formation method here to specify IDv(G) (the
theory of 6, classes for a < v) and ID_ (6) = U 1ID (6). Similarly we can

p< v

deal with IDv and ID‘< theories for more general iterated closure conditions.

v

Accessibility inductive definitions enjoy a privileged position in our in-
formal conception of the subject. We have a direct picture of how the members of
such i.d. sets are generated, which leads us immediately to recognize the ID axioms
for them as correct. This is the picture "from below" . Furthermore, we can carry
out definition by recursion on accessibility i.d. sets. However the axioms for non-
accessibility inductive definitions either need to be justified by impredicative

principles "from above" (for the least set satisfying given closure conditions) or



require a prior classical theory of ordinals. Among accessibility i.d.'s, those of
the constructive number classes ® occupy a special position - partly for their
historical importance but also because each ordinal notation codes its own verifi-
cation tree. A frequent aim in the following is to reduce classical systems of
analysis to accessibility theories IDi or IDE:v 5 Where possible this is carried

i ‘ e
to ID(6), resp. ID_ (6).

The first significant proof-theoretic results obtained for impredicative
systems (after Spector's work) were in Takeuti 1967 for Hi -CA( +BI), later ex-
tended to AiE—CA by Takeuti, Yasugi 1975. For this Takeuti returned to Gentzen's
partial cut-elimination method for arithmetic, which only reduced the complexity

of derivations of numerical statements. He assigned ordinals to these within

special systems of notations which he called ordinal diagrams; these are not

(naturally) based on systems of ordinal functions. Takeuti showed the ordinal dia-
grams to be well-founded, using principles which can be formalized in certain
accessibility IDi theories. Consistency of Hi-—CA and (later) AEE-CA was
proved by transfinite induction on suitable classes of ordinal diagrams. Thus the
work did provide a reduction of these subsystems of analysis to constructive prin-
ciples. However, no sharp bound was given for the provably recursive ordinals of
these systems, nor were the ordinal diagrams attached in any intrinsic way to proofs
(as were the ordinals of derivation trees in Schutte's infinitary approach). Finally,
the details of the arguments for Takeuti's method were extremely difficult to follow,

and a more perspicuous treatment was much to be hoped for and sought.

The proceedings IPT of the 1968 conference in Buffalo on Intuitionism and
Proof Theory (appearing in 1970) contained three papers which contributed to the

solution of the problems just mentioned - though much more work had still to be done.

In the first of these, Friedman 1970, it was shown (by a formalized — and a
bit tricky — model-theoretic argument) that EZ;—AC is reducible to (ni-—CA)<:s g
o

the ni-—comprehension axiom iterated any number < GO times. More generally,

1

x . 1
i1 ~AC is reducible to (Hn-—CA) &

z
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Feferman 1970 gave a straightforward (formalized model-theoretic) reduction
of (ﬂi -CA) <y to ID. v(w) for various v, including v= e, - It was conjec-
tured then that IDv was (finitistically) reducible to IDt(G) and similarly for

D IDi:v(®). At that time it was known (by previous work of Howard, Kreisel

<V’

and Troelstra) that IDl is reducible to IDi(@), but only by a roundabout argu-
ment through a formal theory of choice sequences. All methods known at that point

failed to extend to ID2.

Tait 1970 gave an interpretation of certain theories of iterated inductive
definitions in calculi PLv of propositional logic with uncountably long conjunc-
tions and disjunctions (ranging over abstract constructive number classes ch for
@ < V). This was used to interpret Z;-—AC it PL_.¢ . The proof made use of
the cut-elimination theorem for the PLv , Which was rzadily extended from countable
logic. However, no ordinals in a natural notation system were attached by this
procedure to (Z;-—AC). In addition, there was the question whether the work could

be made constructive. Tait suggested that this should be possible (it appears using

the principles of '’

o+l to treat PLv); however, this was not evident nor was it

ever carried out by him.

The next main result was due to Howard 1972, who evaluated the least ordinal

not provably recursive in ID;(G) (and hence for ID, by the reduction mentioned

1

above), in terms of the Bachmann hierarchy of ordinal functions. The latter was

an extension of the Veblen hierarchy (e(1>a <Q to certain uncountable «, in
1

particular to the first €-number > Q i.e. The crucial new device

i a=¢ ‘

i Ol+l

in Bachmann's system was to diagonalize at o of cofinality Ol, € efllB =80,
9(01'*01)3==9(01‘F3)0, etc; this in turn requires an assignment of fundamental

sequences of cofinality < Ql to a segment of ordinals in the Bd' number class.

1 . i Fy
Howard's ordinal for IDl is © eﬂl‘fl 0.

Bachmann's method of definition extended the hierarchy 6y to @ in higher
number classes Qv' This was done systematically by Pfeiffer 1964 for finite
number classes and Isles 1970 for transfinite number classes up to the first in-

accessible ordinal. However, since the method requires simultaneous assignment of



