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ABSTRACT

We evaluate the Selberg trace formula for all discrete, irreducible,
cofinite subgroups of PSLZ(IR)n. In particular, this involves studying
the spectral theory of the fundamental domain, and the analysis of the
appropriate Eisenstein series. A special role is played by the Hilbert
modular groups, both because of their relation to the general case, stemming
from a rigidity theorem, and their inherent algebraic number theoretic

interest.
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INTRODUCTION

The Selberg trace formula describes a relation between the geometry
of a symmetric Riemannian manifold, obtained as a quotient space, and the
spectrum of its invariant differential operators. It has been applied to
the study of closed geodesics on the one hand, and to counting eigenvalues
on the other hand. For such an application one needs an explicit
evaluation of the formula. This, however, has proved to be quite involved,
and until recently has only been obtained for spaces of rank one, such as
the hyperbolic spaces.

In this paper we develope this theory for the rank n spaces
H™ = Hxeoo xH

where H is the upper half plane with the hyperbolic metric. We consider
discrete subgroups I of PSLZ(E)ﬂ the connected component of the
identity of the group of isometries of Hn, which are irreducible and such

that

F=HYT

is of finite volume, but not compact. Our goal is to derive the Selberg
trace formula for all these spaces.
We begin Chapter I by describing the known properties of these

groups, and introduce a large family of such in the following way. For a

Received by the editors September 11, 1984 and, in revised form
February 10, 1986.



2 ISAAC EFRAT

totally real algebraic number field K of degree n, let

NEORINGH S0 LD (D)

T, = 58 8 55 € PSL,(0,)
K Lc(1) d(1) [c(“) d(n) lc(l) d(1) 2 7K

be the Hilbert modular group associated to K. A key theorem to our study

is Selberg's regidity theorem, which guarantees that for n > 2 every T
as above is commensurable with one of the FK's.

We then proceed to give a classification of the elements of T.
Typically such an element is of a mixed type, some of its components being
hyperbolic, others elliptic. The other possible types are totally parabolic,

and what we call hyperbolic-parabolic, meaning totally hyperbolic elements

some of whose fixed points are also fixed by parabolic elements. The
existence of these last two types is due to the noncompactness of F.
In section 2 we introduce the algebra of invariant differential

operators of Hn, which is generated by the n Laplacians
i = 1ieee;l s
By an eigenfunction we mean a function u(z) on F such that
AiU(z) + Xiu(z) =0 i lyesssB @
As is usual in this theory, we define a kernel K in terms of T,
such that the eigenfunctions of the integral operator it defines are the
eigenfunctions of the differential operators. To compute its trace, we

rewrite K as a sum over the different types of conjugacy classes of T,

and treat each type separately.
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In sections 3 and 4 we do this for the identity and totally elliptic
elements. This is a rather straightforward generalization of the n =1
case.

In section 5 we consider a general mixed element vy with m components
hyperbolic, n-m elliptic, and look at its centralizer FY. The problem
of determining the structure of FY is first reduced, using rigidity, to
the one for a Hilbert modular group. For T = FK’ we then recognize FY

as the group of automorphs of a binary quadratic form over 0K
2 2
ax” + bxy + ¢y, a,b,c € OK’

which we identify in terms of units in quadratic extension of K. This in
particular implies, that FY is a free abelian group of rank m.

Now that we know T_, we can compute the trace of all mixed +y's in
section 6. In section 7 we go back to the case of FK and exploit the
identification of FY mentioned above. We show a correspondence between
equivalence classes of binary quadratic forms and conjugacy classes of
centralizers of mixed elements. This enables us to rewrite the trace
entirely in terms of the arithmetic of K. It is the sum over discriminants
of a function of the fundamental units, weighted by their class numbers
and regulators.

Since F 1is not compact its spectrum has a continuous part, and
Chapter II is devoted to its analysis. The continuous spectrum can be

described explicitly, and is furnished by a family of Eisenstein series

E(z,s,m) = J  y°(y2)A (y(ys))
YET/T

oo
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n-1 v : a_ s
where s €€, meZ and Xm is an exponential sum similar to a

Grossencharakter. One important thing to notice here is that in spite of
the arbitrary rank, an Eisenstein series still depends on only one complex
parameter.

Since E(z,s,m) 1is invariant under translations of x, it has a

Fourier expansion of the form

E(z,s,m) = ) aQ‘(y,s,m)ezwiq’SL>
')
and
1-
ao(y,s,m) = (yl...yn)skm(y) + ¢(s,m)(y1...yn) S)\_m(y) .

The functions ¢(s,m) play an important role in what follows.
Concentrating again on the FK's, we give in section 2 the explicit

formulae for a They involve Hecke zeta functions with Grossencharakters

0"
and known special functions.

In section 3 we introduce new coordinates, to replace SAERRETS A0
which are necessary for the rather delicate analysis that follows. These
coordinates bring into the picture the fact that there is a unique geodesic
ray connecting a point of F to the cusp. We also compute some of the
Riemannian invariants in these coordinates.

In sections 4 and 5 we give a generalization of Selberg's proof of
the meromorphic continuation of the E's, which employs the Fredholm

theory. We show that E(z,s,m) and ¢(s,m) admit a meromorphic continua-

tion to all of €, and that they satisfy the functional equations:

E(z,1-s,-m) = ¢(l-s,-m)E(z,s,m)

¢(s,m) ¢(l-s,-m) =1 .
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This in particular gives the continuation and functional equations for
all Hecke zeta functions.
E(z,s,0) always has a pole at s = 1, and in section 6 this is used

to prove a theorem of Siegel that says that for FK

vol(F) = (2/m™)p>/2

Lg(2) .
The main relation between Eisenstein series is the Maass-Selberg
relation, which is proved in section 7. This is used in section 8 to

obtain a decomposition of LZ(F)

L2(F) =COROE

where E 1is generated in the L2 sense by the E(z,h+it,m), R 1is
generated by the residues of the finitely many poles of E(z,s,0) in
(%,1], and C 1is the space of cuspidal functions, i.e., those L2
functions whose zero Fourier coefficient is zero.

Using the Eisenstein series, we construct in section 9 a new kernel
H, and prove that K -H 1is a kernel of an integral operator of trace
class. This implies that C ® R has a basis of eigenfunctions. The ones
in (C are called cusp forms.

In Chapter III we go back to the computation of the trace. We begin
with the contribution that comes from the kernel H, for which we use the
Maass-Selberg relations. We can then proceed to evaluate the contribution
of the parabolic and hyperbolic-parabolic elements, which we do in

sections 2 and 3. The latter is particularly involved, since we need to
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cut the domain of integration at the two ends that correspond to the two
parabolic fixed points of such an element.

Up to this point we assume for the sake of simplicity that F has
only one cusp, and that the cusp is at «. In section 4 we describe the
changes one needs to make in order to treat the general case of an arbi-
trary number of cusps.

Finally, in section 5 we collect our results, to give the complete
trace formula for T.

The possibility of deriving these trace formulae was indicated
by Selberg in his fundamental paper [16]. See also P. Zograf [23].

Our point of view in this paper is directed toward applications.
Thus, in the second part of this work ([6]) we use the trace formula

to establish Weyl's law for all groups [ as above, with n > 2

Theorem: Let NF(T) be the number of eigenvalues (Xl,...,An)
for I that lie in the ball of radius T . Then, for n > 2 ,

1
Tn— /2

log T

n
NF(T) = CF'T + 0( )

(with an exnlicit constant CF)

This constitutes a solution to the higher rank analog of the

Roelcke-Selberg conjecture.

In a different direction, W. Miuller [13] has recently used a
more preliminary version of these trace formulae to settle

Hirzebruch's conjecture on signature defects.
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Finally a word about style. Some of the arguments needed here are
similar to the analogous ones in the special case of n = 1. This has
received a number of treatments in the literature, notably Hejhal's
comprehensive work [10]. We have therefore chosen not to repeat these
arguments here, as well as to exclude some of the longer computations.

Otherwise the paper is self contained.



CHAPTER I

THE COMPACT CONTRIBUTION TO THE TRACE

: ; n
1. Discrete subgroups acting on H

Let H be the upper half plane {z = (x,y) € €| y > 0} with the

2 2
hypotherbolic metric d32 = 93—4%22—. Set H" = Hxeee xH (n times).
Then Hn, with the metric induced from H, is a globally symmetric

Riemannian manifold, whose line and volume elements are

n dx? +dy? n dx.dy.

2 1 1 1771

ds = E __2_._. dow = 1 _2
i=1 v i=1 v

The connected component of the identity of the group of isometries

of H™ is G = PSLZ(IR)n, which acts componentwise by linear fractional

transformations, i.e., if 2z = (21,...,zn) e {", o = (0(1),---,O(n))€ G,
(i) b(i)‘
i (i) ¢ i 1 n, then
with o = e yjs L = 1,...,0,
C(1) d(l)J
(1) (1)
(1) (n) (i) il Bl .
oz = (o Z{seees0 zn), oz = T i=1,.0.,0 .
c zi+d

We consider subgroups I € G that satisfy the following three
conditions:
i) T 1is a discrete subgroup of G. Thus we can form the fundamental
domain for its action on Hn, F = Hn/F, and induce the metric

from H" to F.
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ii) F 1is not compact, but is of finite volume. Thus F contains parts
that stretchout to the boundary of H™. We shall refer to these
non-compact parts as the "cusps'" of F.

iii) Since H" is reducible, we wish to guarantee that our study does
not reduce to lower dimensions. To this end, we require that T 1is

irreducible, in the sense defined below.

Definition 1.1: T and T' are said to be strictly commensurable if
I MT'" has finite index in both T and T'. They are said to be

commensurable if [ is strictly commensurable with a conjugate of T'.

Definition 1.2: T 1is said to be irreducible if T 1is not commensurable
with a direct product Fl XFZ’ where Fl(: Gl’ F2 < G2 are discrete,
G1 and G2 are not trivial, and G = G1 xG2.

The basic reference on groups that act on H™ is Shimizu [18], where

in particular, the next theorem is proved:

Theorem 1.3: The following conditions are equivalent:
i) T 1is irreducible

(1) (n)) (1) 1

ii) T contains no element vy = (y yesesy such that vy = for
s (3) .
some i and vy # 1 for some j.
iii) There exists no partial product G' of G such that the projection
of T to G' 1is discrete.

iv) For every y #1 in T, GY’ the centralizer of y in G, is an

abelian group.
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Next we introduce a family of such groups, which plays a key role

in everything that follows. Let K be a totally real algebraic number

kD g, k@ k@

field of degree n, and let K be a fixed ordering

goeeey

of the n imbeddings of K in 1R. Let OK be the ring of integers

of K.

a,b,c,d € OK’ ad -bc = 1}/{t1}.

o . _ ab
Definition 1.4: Let PSLZ(OK) = %[c dJ

Then the Hilbert modular group associated to K is

a(1) b(1) a(n) b(n) [a(l) b(1)

(1) (1)J‘E PSL, (O -
c d

T, = yeees
K ey d(1)J c(n) d(n)J

It is well known that FK is a discrete subgroup of G, and that
its number of cusps equals the class number of K (see Siegel [20]). By

1.3, T is an irreducible subgroup. In addition to the interest in the

K
Hilbert modular groups for their own right, their importance to this theory

stems from Selberg's rigidity theorem:

Theorem 1.5 (Selberg [17]): Let n > 2 and let T satisfy i), ii) and
iii) above. Then I 1is commensurable with a Hilbert modular group of

some field of degree n.

We now give a classification of the elements of TI. Recall that
Y € PSLZ(B{) is called elliptic, parabolic or hyperbolic, if |tr(y)| < 2,
[tr(y)[ =2 or |tr(y)| > 2, respectively. Correspondingly, we call a

Yy € T totally elliptic, totally parabolic or totally hyperbolic, if all

its components are elliptic, parabolic or hyperbolic, respectively.



