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GENERAL INTRODUCTION ON
CRYSTAL GROWTH

By W. E. GARNER
Received 31st January, 1949

In the earlier investigations the two aspects of the growth of crystals,
the initiation of crystallization and the rate of growth, were developed
independently. It is now realized that each plane of atoms or molecules
added to the crystal may involve a fresh initiation of crystallization, and
that the rate of crystallization is dependent on the rate of nucleation on
the crystal surface. This means that in the fundamental treatment of crystal
growth, the two sections are inseparable, and this has been recognized in
the grouping of papers for this Discussion. )

In this introduction, which is mainly historical, the gradual evolution of
the present outlook is indicated. Interest in this field has been accentuated
by important applications in industry and a brief survey of these applications
is included.

Initiation of Crystallization. Throughout the nineteenth century
there was much interest in the crystallization of supersaturated solutions,
for example, of solutions of Glauber’s salt, magnesium sulphate, vitriols,
etc. Boisbaudron found that spontaneous crystallization took place only in
strongly supersaturated solutions and de Coppet, by cooling solutions,
determined the limits of solubility at which spontaneous crystallization
begins. Ostwald developed the idea of a metastable zone on the solubility
diagram showing the limits within which no crystal nuclei could form
spontaneously. This theory proved to be of considerable practical importance
at the time in explaining some of the phenomena of precipitation and of
Liesegang rings.

Much attention was paid to the limiting size of particle needed to start
crystallization in the metastable zone, and rough estimates gave a minimum
size of 10-°-10-1? g. The thermodynamic criteria developed by Willard
Gibbs in 1878 which were applicable to this problem were not very early
appreciated, with the result that for a long period the approach to the
subject was empirical in character.

Tammann’s work on the initiation of crystallization in undercooled organic
liquids and inorganic glasses was of the greatest significance and settled
many doubtful points. By making counts of nuclei under controlled condi-
tions, he showed that the formation of nuclei obeyed the laws of probability
and that the maximum probability occurred at temperatures 40°~120° below
the melting point, where the liquids begin to lose their mobility and show
marked changes in viscosity. There was a zone of about 20°, below the melting
point, where nuclei formation was very slow, which corresponded to the
metastable zone found with supersaturated solutions. Tammann showed
that nuclei could be formed in this zone if the observer would wait long
enough for them. He thought, however, that there might be a metastable
region a few tenths of a degree below the melting point, due to an increase
in solubility resulting from a decrease of particle size. He also found that
the rate of nuclei formation became very slow in the glassy state of under-
cooled liquids, where the viscosity was very high.

Tammann considered that since the formation of a nucleus was a very rare
event, a large number of molecules must meet under limiting condi fions o

7



8 GENERAL INTRODUCTION ON CRYSTAL GROWTH

velocities, orientation and direction of movement, before a nucleus can be
formed. The process was so complicated that any simple relations between
the probabilities and the stabilities of the forms produced were not to be
expected. He concluded that Ostwald’s Law of Stages was not universally

applicable. . i )
Willard Gibbs showed that a spherical particle of phase II, p = p”, was in
2
equilibrium with a continuous phase I, p = p’, when r = %. The

equilibrium is, however, unstable, for if 7 is slightly reduced, the particlp
will decrease in size and finally disappear, and if it be slightly extended it
will grow until phase I completely disappears. The work done in the creation
of a particle of phase II in phase I is always positive up to the value of

r = p,i—_c,, so that phase I is stable with respect to nuclei formation so long

as 7 is of such magnitude for the surface tension equation to apply. It will
break down as » approaches molecular dimensions and p” > p’. It would
be expected, therefore, that for an undercooled liquid there would be a
metastable region for phase I, where spontaneous nuclear formation could
not occur, and a metastable limit below which the system became labile
owing to » approaching molecular dimensions.

Haber employed the Thomson equation,

Ts—T, 20M
T, = Q9
in a theoretical examination of the crystallization of supercooled liquids.
T is the melting point, T, the melting point of a nucleus of radius 7, ¢ the
interfacial energy, Q; the heat of crystallization, p the density of the solid
phase, and M the molecular weight. He postulated a Spurenschmelzpunkt
as the melting point of the smallest ordered aggregate, which determined
the temperature of the metastable limit.

These considerations of Gibbs and Haber will, however, be modified if
there be taken into account the local fluctuations of energy which occur in
any fluid and which have been demonstrated in the phenomena of critical
opalescence. These local fluctuations will facilitate the formation of nuclei
and render the metastable limit less sharp, although the conception of a
metastable zone is still of some practical value.

Rate of Growth. Tammann’s researches on the crystallization of super-
cooled liquids show that the rate of crystallization is very slow down to about
30° below the melting point, increasing to a maximum which is often flat,
and falling off as the viscosity increases to that of a glass. The maximum
for the rate of crystallization lies at higher temperatures than for nucleation.
The low values just below the melting point are due to the slow removal of
heat of crystallization. Tammann concludes that the rate is at its maximum
when the temperature of the melt is

T=T,— QO/Cm,

where T, is the melting point, ¢, the heat of crystallization, and ¢,, the mean
specific heat.

Surface Flow. Studies of the growth of crystals from the gaseous
phase indicate that the flow of molecules over the surfaces of the crystals
plays an important role in the rate of crystallization. Volmer and Estermann
showed that mercury crystals formed from the vapour consist of very thin
flat plates, and that the rate of extension of the main faces can only be
accounted for if the molecules colliding over the whole surface of the crystal
are available for the growth of the very small areas at right-angles to the
basic planes. This requires that the surface flow of a molecule during its
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lifetime on the surface is of considerable magnitude. The work of Becker
and of Taylor and Langmuir on adsorbed casium on tungsten, and of
Bosworth on potassium on tungsten, at temperatures where the evaporation
of the adsorbed atoms is low, shows that the atoms undergo activated diffusion
along the surface. For casium the number of sites covered during the
lifetime is at least 108. Also, Newman has demonstrated that activated
diffusion occurs on the surface of heated sodium chloride crystals. The
experiments of Volmer and Adikari on the surface flow of benzophenone
on glass and of Kowarski on p-toluidine over a crystal of the same substance
illustrate the same principle.

The extension of this principle to crystallization from supersaturated
solutions and from undercooled melts is unavoidable, since in general the
work required to move a molecule or ion along the surface is less than that
to transfer it to the liquid phase.

The Repeatable Step. The energies required to remove ions or mole-
cules of sodium chloride from the surface of a crystal into the gaseous phase
have been calculated by Kossel and Stranski for the corner, edge and various
surface positions. Homopolar lattices have been dealt with similarly by the
same authors and by Becker and Déring. The difference between the energies
for the various sites is sufficiently great to have an important bearing on the
kinetics of crystal growth.

In building up a plane of atoms on the surface of a crystal, the greatest
energy is liberated at the repeatable step of an uncompleted edge of a
covered area. The energy evolved on adsorption on such sites is approx-
imately the same as that resulting from embedding the atom half-way in
the crystal. The process of crystallization on surfaces large compared with
the atomic diameter consists mainly in the repetition of the ‘repeatable
step.” The adsorption of atoms singly on the plane surface is much less
strong than at the repeatable step. Over part of the range of temperatures
for which atoms are firmly held at the repeatable step, those on the main
surface are readily desorbed. The surface molecules, however, travel by
surface flow considerable distances before they evaporate, and therefore
it is to be expected that in favourable circumstances the whole surface of
the crystal will act as a collecting ground for the repeatable step.

Two-dimensional Nuclei. The rate of evaporation is greatest if the
adsorbed molecules are held singly on the surface and least when held at a
repeatable step on a two-dimensional nucleus, the size of which is above
a critical value. In the building-up of new crystal planes, the average time
taken to complete a two-dimensional nucleus of this critical size may be
considerably greater than that required to complete the plane of molecules
by a succession of repeatable steps. Volmer, for iodine crystals growing from
vapour, concludes that the formation of the two-dimensional nucleus is such
a rare event that the probability of its occurrence determines the velocity
of crystallization.

Crystals grow the more regularly the lower the supersaturation. At high
supersaturations polymolecular sheets are built up, giving a series of steps
on the faces of crystals which can be detected by interference colours
(Marcellin, Perrin, Kowarski). These phenomena are of frequent occurrence
and are of special interest. Stranski, studying the growth of polished spherical
surfaces, shows that the planes with high indices of even simple lattices give
uneven surfaces during growth, built up of steps of various heights. It
should, however, be borne in mind that some of these phenomena may be
due to the discontinuities caused by polishing. It is clear, however, that the
mechanism of crystal growth, with complex molecules from strongly super-
saturated solutions, can become an involved problem. Phenomena make

A &



10 GENERAL INTRODUCTION ON CRYSTAL GROWTH

their appearance which have not been unambiguously elucidated. It is
possible that some of these may be due to Smekal, Zwicky or other types of
discontinuity, as suggested by Frank. However, under the simplest condi-
tions, with low supersaturation, the conception of the formation of two-
dimensional nuclei aided by surface flow may prove to be adequate for the
calculation of rates of growth.

Crystal-Crystal Interface. The nuclei formation in solid phases obeys
similar temperature relationships to supercooled melts, giving maxima at
temperatures considerably below the melting point. Volume changes on
crystallization, producing cracks, are, however, an added complication.
Nuclei formation in processes which are accompanied by gas evolution are
one step more complicated, but the phenomena obey the same general
rules. In a number of cases in which gas evolution occurs, the activation
energy is approximately the same as the thermodynamic heat for the process,
which implies a close fit between the lattices of the two phases and a very
close coupling between the disappearance of the old and the building-up
of the new lattice. This may well be the case, in favourable circumstances,
for the growth of one crystal phase out of another.

Practical Applications. The need for large crystals free from flaws
for spectroscopy, piezoelectric measurements and the various purposes
of the electrical industry cannot be met from the diminishing natural
resources, nor do these give a sufficient variety. This has led to researches
on the methods of accurate control of crystallization from the vapour phase,
the melt, from supersaturated solutions and by hydrothermal processes at
high pressures simulating those in nature. In the natural processes whereby
crystals are formed in the earth’s crust, an infinitude of time is available for
the manufacture, but on the industrial scale the time available makes it
necessary to work at higher supersaturations, where irregularities are the
more likely to occur in the crystallization processes.

The control of crystal shape and size by the addition of surface active
substances is a requirement in many industries. In the explosives industry
particles with as nearly spherical shape as practicable are advantageous from
the point of view of flow properties, bulk density, pelleting properties, etc.
It is also possible in cases where two solid modifications are produced to
prevent the formation of the unstable modification by the use of suitable
additaments. The control of particle size distribution is also important in
the manufacture of materials used as the basis of products with good
plasticity. The tendency of hygroscopic substances to cake can often be
reduced by paying attention to crystal shape, choosing that shape which
gives a minimum of contacts between the grains.

The surface agents may operate by adsorption on one set of faces, either
reducing or preventing growth, as is found by the use of certain dyestuffs.
These agents may operate by retarding all growth except in one direction,
thereby giving spherulitic growths. The detailed mechanism by which
they act is not yet elucidated, although it can readily be seen from current
ideas on crystal growth that the effects of adsorption at the repeatable step
would have important consequences.

There are many processes in which crystallization is the final stage,
giving the product its essential properties. Such are the manufacture of
cements, bricks, ceramics, etc. Although in these cases the crystallization
process is often accompanied by chemical change, the mechanism involves
the nucleation by crystals and the growth of crystals such as occurs for the
simpler processes, and their study will benefit by the development of the
fundamental theory of crystal growth.

The University, Bristol.



I. THEORY OF CRYSTAL GROWTH

Introductory Paper
By N. F. Morr
Received 7th March, 1949

The theory of crystal growth can, it seems to me, conveniently be divided
into three parts. These are : )

(@) The theory of the rate of growth of a surface in contact with a vapour
or solution with a given degree of supersaturation. Or, in the case of a
crystal growing from the melt, the theory of the rate of growth for a given
degree of supercooling. This will include a discussion of the rates of growth
of different crystal faces, and the effect on growth rates of impurities which
may be adsorbed on the surface, and of imperfections in the crystals them-
selves. The solution of the problems under this heading depends, of course,
on a knowledge of interatomic forces.

(b) The use of results obtained under the heading (a) to determine crystal
forms in as far as they depend in the case of growth from solution, or
diffusion of the ions or atoms to be deposited, or in the case of growth from
the melt on conduction through the material of the heat liberated. Much
of the theory of dendrite formation is included in this category. It forms
a part of classical rather than atomic physics, depending as it does on the
equations of diffusion and heat flow.

(c) Discussions of the crystal form of the deposit. This will include such
problems as the formation during growth of screw or edge dislocations in
the crystal ; a solution of these problems is very important for the theory
of mechanical strength. Then there is the question of the possible pseudo-
morphic forms of crystalline films grown on a substrate of different composi-
tion ; a contribution to this subject is made by van der Merwe in a paper
to be presented to this conference. And, finally, there is the question of the
state of strain and possible cracking of the surface layer treated by Moliére,
Rathje and Stranski.

(@) Atomic Theory of Growth. The elements of a theory of crystal
growth have been laid down by Volmer, Stranski, Becker and Déring, and
new contributions made by Frank, Burton and Cabrera (for references, see
the contribution of F. C. Frank to this Discussion). This theory applies
explicitly to growth from the vapour; but can probably be applied in
principle to growth from solution. The problem of growth from the melt
remains an open question.

The elements of the theory of growth are as follows: consider a flat
crystalline surface of low indices (say, (x00) for a simple cubic or (111) for
a close-packed structure) in contact with a vapour. Suppose this surface is
partly covered by another layer. Then if the pressure of the vapour is raised
by a small amount Ap above the equilibrium vapour pressure, theory indicates
that the layer will grow, with a speed proportional to Ap, until it covers the
surface. But in order to start a new layer, a two-dimensional nucleus must
be formed, and, like other nucleation phenomena, the rate of nucleation
varies with Ap as e ~4/4#, where A is a constant at given temperature. It
follows that when Ap is below some critical value the rate is negligibly small.

It seems likely that the growth rate depends in general on the rate of
nucleation, at any rate for surfaces of low indices; for surfaces of high
indices, having a step-like formation anyhow, nucleation is much easier.

II



12 THEORY OF CRYSTAL GROWTH

But such surfaces of high indices will, of course, by growing quickly tend to
disappear, leaving a crystal surrounded by planes of low index only. )

It should be emphasized that a flat surface in contact with vapour will
have a number of atoms adsorbed on it. Two-dimensional nucleation can
occur whether or not these are mobile over the surface ; it is not at present
quite certain whether their mobility affects the rate of nucleation.

Among the papers presented to this Discussion, Becker gives a valuable
account of the relation of his theory to Mayer’s theory of condensation.
Burton and Cabrera, in a paper to be published elsewhere, have made some
refinements to the present theory by calculating the shape of the two-
dimensional nucleus when it has reached the size beyond which it will
normally spread. This puts the theory on a firmer footing, and does not alter
the numerical values very much. Frank points out that the theory suggests
a growth rate which is negligibly small unless the supersaturation of the
vapour is of the order 15, and that this is contrary to experiment, in particular
to the results of Volmer and Schultze on the growth of iodine crystals ;
the degree of supersaturation required is of the order 1-or. He suggests
that the presence of dislocations is essential for growth at these concentra-
tions, and that the growth rate depends essentially on the density of dis-
locations in the material.

Theory has at present made little contribution to our knowledge of habit
modification. It does, however, follow that, if dislocations are essential
for crystal growth, very small concentrations of impurity, which could be
adsorbed preferentially at the ‘“ledge ” where the dislocation meets the
surface, could profoundly affect growth rates and thus lead to habit modifi-
cation.

(b) Phenomena Depending on Heat Flow and Diffusion. It is
believed that dendrite formation in the solidification of liquid metals is
due to the fact that a thin needle, growing into a supercooled solution,
will need to get rid of less heat by conduction than a thicker one and so will
grow faster. In the same way, in the formation of crystals from solution,
a thin needle will grow more quickly than a thick one into supersaturated
solution. Probably the clue to the step formation observed by Bunn will
be found along these lines.

(c) Physical State of the Crystal as a Consequence of the Mechanism
of Growth. Frank, in his paper, gives some reasons for believing that,
at finite growth rates, dislocations will be formed in the crystal. They
are in no sense present in thermodynamic equilibrium and ideally a long
enough anneal would get rid of them ; but, in practice, there appear always
to remain a certain number.

Stranski and his colleagues reopen the very interesting question of the
state of strain of the surface layer. The origin of the “ Griffith cracks,”
responsible for the low stress for fracture of brittle materials, has never
been explained, and it is possible that this work will provide a clue.

In a later section of the Discussion, van der Merwe discusses the crystal
structure of thin films deposited on a substrate of differing crystal structure.
He shows that the question, whether or not the deposit has a pseudomorphic
form, depends on whether the first monolayer conforms to the structure
of the substrate or not; and that this in turn depends on the degree of
misfit.

Equilibrium Crystal Forms

The study of the shape of a crystal in equilibrium with a vapour forms
an interesting field rather apart from the theory of crystal growth. Burton
and Cabrera have found that the equilibrium form of the two-dimensional
crystalline nucleus on a flat substrate is a rounded polygon, if only one



N. F. MOTT 13

atomic or molecular unit is involved. For ionic forces, on the other hand,
it appears that the two-dimensional nucleus may have sharp corners. In
the case of three dimensions Stranski has shown that the corners of a crystal
are rounded off through the presence of a finite number of planes of higher
index, and so are not truly rounded.

The microstructure of the surface in equilibrium with vapour or solution
is also of interest. As already stated, a flat surface will always contain some
adsorbed atoms, and there will always be some vacant lattice points. Burton
and Cabrera have made an investigation of the concentration of ‘ Frenkel
terraces "’ on a surface in equilibrium. For faces of low index, there will
be practically none for a perfect crystal ; any which exist depend on the
presence of dislocations. A crystal temperature exists, however, at which
they form, but this will in general be above the melting point.

H. H. Wills Physical Laboratories,
Royal Fort,
Bristol 8.

FORMS OF EQUILIBRIUM OF CRYSTALS
By I. N. STRANSKI
Received 17th February, 1949

A knowledge of the forms of equilibrium of crystals is important for an
understanding of the processes on crystal surfaces, independent of whether
the crystal is immediately concerned in these, or merely functions cata-
lytically. Furthermore, a comparison between theoretically and experi-
mentally deduced forms of equilibrium makes it possible to check the
assumptions used in the former, and supplies valuable clues to alteration
in structure and changes within the individual lattice surfaces.

The following observation should first be made. The theoretical treatment
falls into two parts. First the underlying ideas must be developed, then
the mathematical work can be started. This is directed by the knowledge
at the time of the force functions, and must of necessity bring new problems
in its train. In the following I will confine myself to the part dealing with
the underlying ideas.

The treatment of the forms of equilibrium of crystals has been developed
on the basis of two fundamentally different ideas. The older one, historically,
made use of an analogy to liquid surfaces. The surface tension here was
replaced by the idea of the specific surface energy o.

The values of ¢ for crystals are dependent upon direction, so that in
general the form of equilibrium is a polyhedron which must satisfy Gibbs’
condition :

26i . F; = minimum, at constant volume.

If one ignores the edges and corners, it is known that here, also, one arrives
at the same relation as for vapour pressure, which is completely analogous
to Thomson’s equation and has the following form ! :

kT PI_UI__ _G'i_
Z—UOIDE-—Z—...—-’T—... o v (I)

! The following recent papers on the Thomson-Gibbs relation are mentioned :
Volmer, Kinetik der Phasenbildung (Dresden and Leipzig, 1939), p. 87 et seq.
v. Laue, Z. Krist., 1943, 105, 124.
Stranski, Z. Kvist., 1943, 105, OI.
Honigmann, Moliere and Stranski, Ann. Physik, 1947, ¥, 181.
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v, represents the volume of a crystal unit and #; the centre distance, o;
the specific surface energy of the i-th face. p, and p,, are the sublimation
pressures of the finite- and infinite-sized crystals respectively. Wulff’s
method for the construction of equilibrium forms of crystals follows directly
from eqn. (1). )
An exact relation, capable of general application, cannot be derived in this

way. For if we wish to take into account the
(5) 2 / 3(7)

fact that the crystal also possesses edges and
()1 / 4 (8)

corners, and that the specific surface energy
and the specific energy of the edges and
corners which must further be introduced,
possibly depend on the size of the crystal as
well, a relation can only be derived at first

Fic. 1.—Division of a crystal by

three planes. Two of these
are shown as lines where
they cut the plane of the
diagram, the third lies in the
diagram plane itself. The
figures in brackets denote
the sections below the plane
of the diagram, those with-
out brackets the sections
above it.

for simplified models. This is to be shown in
the following for the case where the form
of equilibrium of the crystal is represented
by a simple crystalline form, i.e., it is sur-
rounded by only one kind of face. For
this purpose let us refer to the definition of
the specific surface energy, and give the
definition of the specific edge and corner

energies in reference to Born and Stern.?

The specific edge energy x is defined as
the work which must be done in order to separate the crystal sections
1 and 3, 2 and 4 respectively (see Fig. 1), divided by twice the length of
the edge, and given a negative sign. Correspondingly, the specific corner
energy ¢ is half the work required to separate two crystal sections situated
diagonally in space, with their corners touching, e.g., I from 7, or 3
from 5 (see Fig. 1). ‘

Assuming that these values are independent of the dimensions of the
crystal, one obtains in place of eqn. (1) :

ET., p o, %

zvolnpw_r_}- s & : . : (2)
Thus, as a result of the existence of edges, an additional term appears as
correction. The corners are without influence.

In order to be able to discuss the
dependence of the values ¢, » and ¢
upon the size of the crystal at all, the
definitions of these values for finite
crystals had first to be found. The
definitions given by me at that time 3
will be explained for a simple case
with the aid of Fig. 2. If the form of
equilibrium is represented by a cube,
o, is equal to the work of separating
such a small crystal from a cube face of
the infinite crystal, divided by twice
the area of one cube face of the small
crystal. %, is correspondingly equal
to the work of separating such a cube from the infinite crystal quadrant
lying diagonally opposite divided by twice the length of a single edge and

Fi1c. 2.—To define the values 64 Xa
and ¢, for a finite crystal cube
with an edge-length a.

2 Born and Stern, Ber. Berlin Akad., 1919, 48, 91 ; Stranski, Z. Krist., 1943, 105, 287.
3 Stranski, Ber. Wien. Akad., math.-naturwi. Kl., 1936, IIb, 145, 840; Mh. Chem.,
1936, 69, 234.
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with a negative sign. Lastly the corner energy «, is equal to half the work of
separating a small crystal from the infinite crystal octant lying diagonally
opposite in space. Thus the total surface energy of a small crystal with edges
of length a is
®, = 6a%c, + 12 a %, + 8¢,4. : . ; (3)

In this case it is possible to obtain the form of equilibrium of a small
crystal simply by taking an infinite crystal to pieces, and @, can also be
defined as the work of separating a small crystal from a crystalline half-

crystal position (see Fig. 3). However, it should
be mentioned that @, is generally given in the
following relation :

N,
®.=Neg—Se . .

@1, is the work of separating a crystal unit from
the half-crystal position (see below). The second
term is the work obtained in building up the small
crystal from its N, individual crystal units.

The example dealt with in the last section is
especially simple. The important thing is, that
this case already shows that it is not possible to

=

a7

F1G. 3.—Crystalline half-

crystal position. &,
is equal to the work
of separation of the
crystal cube with
edge-length a, in the
half-crystal position,
as shown in the
diagram.

specify the exact sublimation pressure of a small
crystal from the forms of equilibrium, with the aid of the values o,, %,
and ¢,, now assumed to be variable.

For this purpose, the differentiation of the eqn. (3) is necessary :

te _ 40, da | ¢ 2d da dxa | o des
lenPw_dN ~120',;adN+6a dN-}-szadN—{—Iza dN+8dN

The values ®,, o,, %, and e, would thus have to occur as continuous
functions of the number of crystal units N. That is not the case, however,
for they present themselves as a series of isolated points.

The following possibilities can be discussed. (1) Curves are drawn through
these points and differentiated. The result could give the sublimation
pressure with sufficient exactitude. (2) The dependence of the values a,,
%, and e, upon N can be found to be so small that it can be neglected.
Neither possibility, however, can be proved for no standard of comparison
exists at present, which gives us the correct pressure values. We will return
to these questions below.

The advantages of the method using the values o, x and ¢ are not to be
denied, for by means of it, all considerations which had been made on liquid
systems could be applied in a comparatively simple way, and with little
alteration, to crystal systems. Special attention is here drawn to the fact
that, on the whole, Volmer’s theory on the frequency of nucleus formation 4
also reproduces the conditions correctly for crystal systems. By continuing
the nucleus idea, introducing, namely, the idea of a two-dimensional nucleus,
the growth of a crystal could be submitted for the first time to a mathematical
method. Many different questions could be answered comparatively simply.
The interpretation of Ostwald’s step-rule may be mentioned as an example.5

But the disadvantage of this method must also be enumerated. The
values o, x and € do not refer at all to elementary stages of growth and
reduction, and the relations which are obtained with their aid can only be
applied under certain conditions to kinetic considerations on crystals, and
remain difficult to visualize. As is known, the application of Thomson-Gibbs’

¢ Volmer and Weber, Z. physik. Chem., 1926, 119, 277 ; Volmer, loc. cit.
® Stranski and Totomanow, Z. physik. Chem. A, 1933, 163, 399.
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equation has led to numerous, and often crass, misunderstandings. This
method, by simulation of completion, has also prevented many equilibrium
questions from being asked and answered at the right time.

The second treatment began to take form as a result of work by Kossel &
on the one hand, and myself on the other.” The work of separating individual
crystal units from the crystal surface was estimated, NaCl being taken as
the first example, and with the help of this it was possible to draw a picture
of the molecular processes connected with growth and solution. The logical
starting point for these considerations is the determination of the length
of time a crystal unit remains in the so-called half-crystal position. )

The crystal unit in the half-crystal position possesses a work of separation
which amounts to half of that of a crystal unit in the inside of the crystal.
It is thus equal to the negative value of the lattice energy per crystal unit,’
and determines the vapour pressure of the infinite-sized crystal. Elementary
reasons can be given for this conclusion if the position of growth of a
repeatable growing crystal face is chosen as model of the half-crystal position.
For, in this case, the position as such is retained after any number of separa-
tions or addition of crystal units. Thus the crystal would only be in equili-
brium with its surroundings, if the probability of a separation of a crystal
unit from the half-crystal position is found to be equal to the probability of
an addition on this.

With the help of the different works of separation, it has already been
possible to draw a series of conclusions which, at that time, were justifiably
regarded as completely new-fangled. Only as a consequence of these was
it asked whether certain faces in equilibrium can be retained as such, or
whether their surface structures would have to undergo alterations of a
coarsening nature.

It should be emphasized here that these questions could have been asked
earlier, as a result of the determination of the values, or merely the signs,
of the specific peripheral energies of the lattice surfaces concerned. That
they have not been asked up to this time is to be explained exclusively
by the fact that the older theories were difficult to visualize.

Because of its importance the criterion might be given here by reason
of which one can decide whether a certain face appears in the equilibrium
form of the infinite-sized crystal or can remain as crystal face. If the specific
peripheral energy of this lattice face shows the value zero or a negative
value, in one direction only, this face cannot appear as a form of equilibrium.
Should this condition be fulfilled for one direction only, the face concerned
will grow over one-dimensional nuclei and show a typical chain formation.
A chain formation alone, on the other hand, is not sufficient argument
against the face belonging to the equilibrium form. If this condition is
fulfilled for two directions, the one-dimensional nucleus formation is also
eliminated. An example of the first case is (ox1) on the NaCl crystal and of
the second, (11I) on the same crystal.

Another question could also be answered with the help of the work of
separation, namely, with what kind of face must the infinite-sized crystal
be surrounded ? For it is evident that the only possible form of equilibrium
is one in which all corner crystal units are bound at least as firmly as in the
half-crystal position. So that by starting with a simple form, and systema-
tically removing all crystal units which are less firmly bound, one could
arrive at forms which no longer exhibit such crystal units, and which then
mirror the equilibrium form, in that they possess all the faces of same.

In order to arrive at an expression which represents the sublimation

¢ Kossel, Nach. Ges. Wiss. Gottingen, 1927, 135 ; Leipziger Vortrage, 1928, 1.
7 Stranski, Z. physik. Chem., 1928, 136, 259.



