PROGRAMMING
~ GUIDELINES

C programs can be portable to a wide variety
~ of processors, efficient in their use of machine
resources, and readable by future maintainers.

Programming projects working in C should use
guidelines for style and usage to achieve
portability, readability and consistency.

‘Thomas Plum




8563751

C

PROGRAMMING
GUIDELINES

| Thomas Plum

-t E8563751

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632



© 1984 by Plum Hall Inc, Cardiff, New Jersey 08232
This Prentice-Hall, Inc., edition published 198L4.
All rights reserved. No part of this book may be

reproduced, in any form or by any means,
without permission in writing from the publisher.

Library of Congress Catalog Card Number: 84-60386
ISBN: 0-13-109992-2 (Prentice-Hall, Inc., edition)
ISBN: 0-911537-03-1 (Plum Hall Inc edition)

Printed in the United States of America

10 9 8 7T 6 5 4 3 2 1

INBN 0=13=30999E~2

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL. OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand



For Joan




PREFACE

C is a highly portable language which generates efficient code
for a wide variety of modern computers. It was originally
implemented on the UNIX¥* operating system for the DEC PDP-11 by
Dennis Ritchie. Within Bell Laboratories it is widely used for
systems and application programming. 1In the years since it was
made available to universities and commercial organizations, it
has proved valuable for systems programming, switching and
communications, microprocessors, text processing, process
control, test equipment, and the creation of numerous application
packages. Its audience has been widened by compilers for many
operating systems besides UNIX; these compilers have been
produced by numerous software companies, among which the pioneer
was Whitesmiths, Ltd. Whitesmiths® Idris* operating system (on
which this book was composed) is, like UNIX, almost entirely
written in C.

Programming standards can be valuable to any organization
producing programs in C. Its compact notation and absence of
restrictions can be used in an undisciplined fashion to produce
programs unreadable to any but the original author -- if indeed
the author can read them after the passage of time! A uniformity
of style can make the thankless task of the maintainer much
easier. The code can be modified much easier when standards are
followed.

In addition to aiding consistency, standards also enhance
portability of the source code, since one of the important
virtues of the C language is its combination of portability and
efficiency.

However, achieving portability requires attention to a small set
of problem areas, which are addressed by the portability
standards in this book.

¥Trademarks: Idris of Whitesmiths, Ltd.; UNIX of AT&T Bell La-
boratories.




Disagreements over programming style have been a primary obstacle
to teams attempting to work closely together. One suggestion for
preventing style arguments is for each project to choose its own
standard in the early phases of the project. The layout of this
book was chosen to facilitate its wuse in a pick-and-choose
fashion. Space has been left for local notes so that the book
could be used to keep a record of meetings regarding style
agreements. Each section is named (in the style of UNIX manuals)
as well as numbered, for ease of later reference. The author
asks in accordance with copyright laws that this book not be run
through the copying machine; Plum Hall Inc will make available on
a reasonable license arrangement both hard-copy and machine-
readable originals for projects that wish to incorporate this
material in their own standard.

In this edition of C Programming Guidelines, the usage of types,
function names, and indentation conforms to the format of the
UNIX manuals published by Bell Laboratories. The style usage is
consistent with Learning to Program in C, by Thomas Plum (Plum
Hall Inc, 1983).

Previous editions of these guidelines made reference to the (now
obsolescent) UNIX Version 6 compiler. Such references are
omitted from this edition. Where portability is a concern, do
not use the V6 compiler.

This book is also available in the format of the manuals from
Whitesmiths, Ltd., in C Programming Standards and Guidelines:

Version W (Whltesmlthg) The discussions of portablllty,
however, apply to both systems.

During 1983, a committee was formed by the American National
Standards Institute (ANSI) to standardize the definition of the C
language. Previous editions of this book had the word
"standards" in the title. To avoid any possible confusion with
the development of the ANSI standard, I have dropped the word
"standard" from the title of this book. I thank the other
members of the ANSI X3J11 committee for enlightening discussions
about the C language. In my opinion, based on information
currently available, programs written according to the guidelines



in this book should be well prepared for the eventual ANSI
standard; however, no one can give any official guarantees as of
this date.

For thoughtful comments and suggestions on various drafts of this
material, I am indebted to Tom Bishop, Debbie Fullam, David
Graham, Joan Hall, Brian Kernighan, Bill Koenig, Mark Krieger,
Eli Lamb, Ian MacLeod, Bill Masek, Paul Matthews, Bill Plauger,
Ed Rathje, Chaim Schaap, and Steve Schustack.

And for their steadfast support, my heartfelt thanks to Suzanne
Battista, Linda Deutsch, Anne Hall, Joan Hall, Karl Karlstrom,
and Sonya Whynman.

Thomas Plum




CONTENTS

Preface

Chapter

Chapter

Chapter

Chapter

0
0.1standards
1

1.1lexdata
1.2names
1.3stdtypes
1.l4constants
1.5wordsize
1.6byteorder
1.7charconsts
1.8ptrtypes
1.9ptrconv

2

2.1lexops
2.2evalorder
2.3bitparen
2.4rightshift
2.5sideorder

3

3.11lexctl
3.2while
3.3loopinvar
3.4elseif
3.5control
3.6structure

Introduction
Standards and guidelines
Data and Variables

Lexical rules for variables
Choosing variable names
Standard defined-types
Maintainability of constants
Word and byte size
Byte ordering
Character constants
Pointer types
Pointer conversions

Operators

Lexical rules for operators

Allowable dependencies on evaluation order
Bitwise operators and parentheses

Right shift and unsigned data

Order of side effects

Control Statements

Lexical rules for control structure
"while" and the N+1/4 - time loop
Designing with loop invariants
Multiple-choice constructs

Restrictions on control structures
Program structure and problem structure



RINRG 1 £

Chapter

Chapter

Chapter

4

4. 11exfns
4,2headers
4,3files
4,4includes
4,5stdflags
4,6nest

4, Tnoinit
4,.8coupling
4,9cohesion
4,101ibfns
4,11portlib
4,12environ
4.13fnsize
4, 14macros
4.15struct

5

5.1compilers
5.2comments
5.3specs
5.4reviews
5.5defensive

6

6.1lunix
6.2ws
6.3dg
6.4prime
6.5dr
6.6lattice
6.7ci
6.8manx
6.9refs
6.10index

Functions and Other Modules

Lexical rules for functions
Project-wide standard header files
Size for source files

Includes at head of file

Standard compile-time flags

Nested include-files

No initializations in header files
Methods of coupling modules together
Cohesion and meaningful functions
File structure for library functions
Use of portable library

Non-portable environment features
Suggested size of functions

Writing macros

Defined-types for structures

General Standards

Avoiding non-portable compiler features

Suggested use of comments
Specifications

Code reviews

Defensive programming

Appendix

Features of UNIX C Compilers
Features of Whitesmiths C Compiler

Features of Data General A0S/VS C compiler

Features of Prime C Compiler

Features of Digital Research C Compiler

Features of Lattice C Compiler

Features of Computer Innovations C Compiler

Features of Manx C Compiler
References
Index



0.1standards C PROGRAMMING GUIDELINES 0. 1standards

NAME
0.1standards - standards and guidelines

STANDARD
Criteria labeled as "STANDARD" are mandatory for all code
included in a product.

The need for exceptions may occasionally arise, but the
exception requires a specific justification, and the justifi-
cation should be documented with the source code. This is a
"permissive" approach to exceptions; this book is not inten-
ded to satisfy any legal, auditing, or quality-assurance cri-
teria.

Project-wide exceptions to the standards may be justified and
should be documented as an appendix to the standard.

Criteria labeled as "GUIDELINE" are recommended practices.
Experience has shown that differing approaches can coexist in
these areas. It is expected that, in general, a majority of
programmers will follow the guidelines, so that they
represent a widely-accepted pattern.

Copyright (c¢) Plum Hall Inc 1984 1



1.11lexdata C PROGRAMMING GUIDELINES 1.1lexdata

NAME
1.1lexdata - lexical rules for variables

STANDARD
Variable names should be written all in lower case. Many
compilers require names to be distinect within 8 characters,
but longer names can be useful for readability. (For porta-
bility, externals should be distinct within 6 characters.)
All names should be explicitly declared. The sequence of
declarations should be as follows:

external names, alphabetized by name within type;
other names, similarly alphabetized by name within type.

Initializers should be written using the equal-sign, with
only one variable declared per source line:

short n
short m

MAX;
MAX;

Initializers of structures, unions, and arrays should be for-
matted with one row per line:

static short x[2][5] =
{
{1, 2, 3, u’ 5}’
{6’ Ty 8’ 9, 10}’

’

Declarations should have only one space between type and
variable name, and comments are attached with at least one
tab:

bool mpflg = NO; /* preprocessed macros flag */
bool ff; /* fork flag */

2 Copyright (c) Plum Hall Inc 1984



1.1lexdata C PROGRAMMING GUIDELINES 1.1lexdata

JUSTIFICATION
The rules pinpoint the location of declarations, avoid con-
flicts of upper- and lower-case names, and encourage documen-
tation of the meaning of variable names.

ALTERNATIVES
Variable names should be aligned in a tabbed column, and
descriptive comments should be attached at a lined-up tab
position:

bool £f; /% fork flag */
bool mpflg = NO; /* preprocessed macros flag ¥/

Alternatives such as this one, which require columnar layout
of source code, should be adopted only when convenient full-
screen editing is available to all programmers. Otherwise,
the difficulties of program revision offset any readability
advantages.

[LOCAL NOTES]

Copyright (c¢) Plum Hall Inc 1984 3




1.2names C PROGRAMMING GUIDELINES 1.2names

NAME
1.2names - choosing variable names

GUIDELINE
Names should be chosen to be meaningful; their meaning should
be exact and should be preserved throughout the program.

For example, variables which count something should be initi-
alized to the count which is valid at that point; i.e., if
the count is initially zero, the variable should be initial-
ized to 0, not to -1 or some other number.

This means that each variable has an invariant (i.e. unchan-

ging) meaning -- a property that is true throughout the pro-
gram. The readability of the code is enhanced by minimizing
the "domains of exceptions", which are the regions of the

program in which the invariant property fails. For example,
in this short loop, the variable nc has the invariant pro-
perty of being equal to the number of characters read so far.
The only exception to the property is during the time between
reading a character and incrementing the counter:

short nc; /* number of characters #/
nc = 0;
while (getchar() != EOF)

++nc;

Abbreviations for meaningful names should be chosen by a uni-
form scheme. For example, use the leading consonant of each
word in a name.

Abbreviations should not form letter combinations that sug-
gest unintended meanings; the name inch 1is a misleading
abbreviation for "input character." “1m11arly, names should
not create misleading phonemes; the name metach (abbreviation
for '"meta-character") forms the phonemes “"me-tach" in
English, obscuring the meaning.

Names should not be re-defined in inner blocks.

4 Copyright (c) Plum Hall Inc 1984



1.2names C PROGRAMMING GUIDELINES 1.2names

A special case of meaningful names is the use of standard
short names like ¢ for characters, i, j, k for indexes, n for
counters, p or q for pointers, and s for strings.

In separate functions, variables with identical meanings can
have the same name. But when the meanings are only similar
or coincidental, use different names.

Names over four characters in length should differ by at
least two characters:

systst, sysstst /¥ easily confused ¥/
JUSTIFICATION
Readability of the code is greatly enhanced by the reader’s
ability to construct natural assertions about the meaning of
names anywhere they appear in the code.

[LOCAL NOTES]

Copyright (c¢) Plum Hall Inc 1984 5



1.3stdtypes C PROGRAMMING GUIDELINES 1.3stdtypes

NAME
1.3stdtypes - standard defined-types

STANDARD
Programs should use a project-wide standard set of data-
type names.

The set of standard types presented here are a mixture of
standard C types (sometimes with usage restrictions) and
defined-types defined by the header file <{stdtyp.h> (presen-
ted later in this section).

There are two purposes for this usage of types: portability
to the widest range of machines and compilers, and semantic
clarity regarding the usage of the data. As regards porta-
bility, some of these types have simple mappings onto a wide
range of compilers, and others have a more complex mapping.

First, the simple mappings:

double|double
|

| [Numbers | Numbers |Bit |Text | Boolean |
| | (signed) | (unsigned) |Masks|Characters| (0 or 1)|
| | | | | | |
|char | - | - |tbits|char | tbool |
| | | | | | |
| short |short | ushort |bits |metachar | - |
| | | [ | | I
|long |long | - |1bits| - | - |
| | | | | |
|float |float | - - - | - |
| | | | |
| | | |
| [ | |

l
| l
I l
I |
I |

6 Copyright (c) Plum Hall Inc 1984



1.3stdtypes

tbits
char
tbool

short
ushort
bits
metachar

long
1bits

float
double

[LOCAL NOTES]

an 8+
an 8+
an 8+

(O VWY

W

a

16+
16+
16+
16+

32+
32+

PROGRAMMING GUIDELINES

bit
bit
bit

bit
bit
bit
bit

bit
bit

1.3stdtypes

integer used for bit manipulation
item used only for characters
integer, but only tested against zero

signed integer used for a quantity
unsigned integer used for a quantity
integer used for bit manipulation
character (either a char or EOF)

signed integer used for a quantity
integer used for bit manipulation

single precision floating point number
double precision floating point number

Copyright (c¢) Plum Hall Inc 1984 7



1.3stdtypes C PROGRAMMING GUIDELINES 1.3stdtypes

Note that there are no int types in the preceding table. The
intent is to avoid careless dependence on the int size of the
computer. In this standard-type scheme, the only type that
always maps to int size is bool, which is provided for func-
tions that return a yes-or-no result.

There are, however, two uses of the int type which are
approppiate for portable programs. First of all, a
function’s returned value may be written as int. This avoids
compiler-dependent differences in the handllng of returned
values. Furthermore, many existing 1library functions are
defined to have int returned values. The second usage of int
is for register integer variables. Here again, the purpose
is to avoid compiler-dependent differences: for example, some
compilers treat "register char" as "register int" while oth-
ers treat it as "auto char." In both usages (returned values
and registers), programs should not assume that int contains
any more than 16 bits.

Thus, two more types are added to the standard usages:

bool - int, tested only for zero or non-zero
int - for function returned values and registers

The type void is available as a keyword in some recent com-
pilers (see Chapter 6 for examples). In this scheme, compat-
ibility with older compilers is provided by defining void to
be int. (Eliminate this definition from your stdtyp h if
your compiler supports void.) S

A new type has been added to stdtyp.h since the previous ver-
sion of these guidelines: sizetype is the proper type for
holding the sizeof any object. TIt is the proper size for the
storage size | paosed to allocation functions such as calloc.
Up until recently, an unsigned int was adequate for this pur-
pose, but in some forthcoming environments an unsigned long
may be required.

Functions such as calloc must return a pointer which is ade-
quate to hold a pointer to any C data object; char * will

8 Copyright (c) Plum Hall Inc 1984



