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Preface.

A first version of these lecture notes was prepared for a course given
in 1980 at the University of Copenhagen to a class of graduate students
in mathematical statistics. A thorough revision has led to the result
presented here.

The main topic of the notes is the theory of multiplicative intens-
ity models for counting processes, first introduced by 0dd Aalen in his
Ph.D. thesis from Berkeley 1975, and in a subsequent fundamental paper
in the Annals of Statistics 1978.

In Copenhagen the interest in statistics on counting processes was
sparked by a visit by 0dd Aalen in 1976. At present the activities here
are centered around Niels Keiding and his group at the Statistical Re-
search Unit.

The Aalen theory is a fine example of how advanced probability
theory may be used to develop a powerful, and for applications very re-
levant, statistical technique.

Aalen's work relies quite heavily on the 'theorie generale des
processus’' developed primarily by the French school of probability the-
ory. But the general theory aims at much more general and profound re-
sults, than what is required to deal with objects of such a relatively
simple structure as counting procgsses on the line. Since also this
process theory is virtually inaccessible to non-probabilists, it would
appear useful to have an account of what Aalen has done, that includes
exactly the amount of probability required to deal satisfactorily and
rigorously with statistical models for counting processes.

It has therefore been my aim to present a unified and essentially
selfcontained exposition of the probability theory for counting pro-
cesses and 1ts application to the statistical theory of multiplicative
intensity models. The inclusion of a purely probabilistic part conforms
with my view that to apply the Aalen models in practice, one must have

a thorough grasp of the underlying probability theory. Of course to
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carry out this programme, some knowledge of probability must be pre-
supposed, especially conditional probabilities, weak convergence and
basic martingale theory.

The first three chapters deal with univariate and multivariate
counting processes and their probabilistic structure, while Chapters
4 and 5 are concerned with the definition of Aalen models and Aalen
estimators, and the asymptotic results required to make the models
applicable in statistical practice.

Naturally, the terminology and notation used in the general theory
of processes has been carried over to the special situation treated
here. One particularly relevant part of the general theory concerns
the definition and basic properties of stochastic integrals of predict-
able processes with respect to martingales. This in particular, is one
place where the setup involving only counting processes permits simpli-
fication compared to the general theory: whereas quite a lot of work
is required to define the general stochastic integrals, all the inte-
grals appearing here are ordinary (random) Lebesgue-Stieltjes integrals.

A number of exercises are given at the'end of each chapter. Some
of the exercises deal with proofs and arguments omitted from the text,
while others aim at covering part of the theory and examples not includ-

ed elsewhere.

Notation. The notation s+¢t means that s - t with s > t, where
s+t allows for s - t with s > t. For X a random variable defined
on a probability space (Q,A,P), the notation I X rather than EX

is used for the expectation of X. Also, IP(X;A) denotes the in-
tegral fAan>. Throughout I refers to a probability on some ab-
stract probability space, while the letter P is reserved for proba-
bilities on some specific spaces. The notation F, F for o-algebras

t

and Nt for random variables also refers exclusively to these parti-

cular spaces.
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1. ONE-DIMENSIONAL COUNTING PROCESSES

1.1. Probabilities on (0,®].

Consider the half-line (0,e] (0 excluded, e included) equip-

ped with the Borel o-algebra B of subsets generated by the subintervals

of (0,=].
A probability Pr on ((0,~],B) may be described by its distri-
bution function F, defined by F(t) = Pr(0,t]l, 0 < t < ». The

function F is non-decreasing, right-continuous and satisfies F <1,
lim F(t) = 0. If conversely F defined on (0,«) is any function
;;tﬁ these properties, then there is a unique probability Pr on

(0,») with F as distribution function.

Instead of the distribution function F, one may use the sur-

vivor function G = 1-F. The following properties characterizes the

survivor functions G for probabilities on (0,»=]: G is non-increas-
ing, right-continuous and satisfies G > 0, lim G(t) = 1.

The termination point tf of a probabiiiig on (0,»] is defined
as t7 = inf{t » 0: G(t) = 0} = sup{t > 0: G(t) > 0}, Thus, if

' <w, g(tT) = 0 while G(s) >0 for s < t' .

A probability on (0,»] allows absorption if it has an atom at
w: Pr{eo} > 0. In that case Pr{e} = G(=-) D 1imG(t)  is the absorp-
tion probability. e

Suppose now that the probability Pr on (0,»] is absolutely
continuous (strictly speaking the restriction of Pr to (0,») is
absolutely continuous with respect to Lebesgue measure) with density

f, i.e. there is a non-negative, possibly infinite, measurable func-

tion £ defined on (0,») such that
t
F(t) = E ds f(s) (0 < £ < )
0

<o
(equivalently, G(t) = G(= -) + J ds f(s) for 0 < t < ),



1.1.2
We shall say that Pr has a smooth density if £: (0,=) » [0,«]

nmay be chosen to be right-continuous with left-limits everywhere such

that 1lim f(t) exists (using the usual topology on (0,«) and on
t¥40

[0,2] the topology obtained when adjoining « to [0,=) (with the

usual topology) in a one-point compactification) .

Suppose Pr has a smooth density £ . The intensity or hazard

for Pr is the function wu: (0,=) - [0 =] defined by

{f(t7/G(t) if G(t) > 0
u(t) =
0 if G(t) = 0.

Since f is right-continuous one has, provided G(t) > 0, that

w(t) = lim % Pr(t,t+h]/Pr(t,«=]
ht40
so that, suitably normalized, the intensity u(t) measures the risk

of "dying immediately after time t given survival up to t".

1.17. Example. Let 0 <y < = be a constant. The exponential law

with rate 1y is the probability on (0,=] with survivor function
G(t) = exp{- ut) . It has smooth density f(t) = ue—“t and an intens-
ity which is constant and equal to u. The special case u =0 cor-

responds to the probability degenerate at o , (absorption probabili-~

ty 1). i

Expressed in terms of the survivor function G alone, it is seen
that

u=r0%(-1log G ,

where D is the right sided differential operator:

D+¢(t) = lim %(¢(t+h) -¢(t)). Conversely G may be recovered from
ht+0

v by

t
(1.2) G(t) = exp (— J ds u(s)> (0 < t < =),
0



1.1.3
It should now be clear that the intensity function u for proba-
bilities on (0,~] with smooth densities are characterized by the fol-
lowing properties: u is non-negative, right-continuous everywhere
with left-limits everywhere except possibly at t.r, the limit lim p(t)

L. E¥¥O0
odsu(s)< =

exists, u is locally integrable at 0 in the sense that f
for some h > 0, and finally u(t) = 0 whenever jgdsp(s) = w,
If Pr has intensity u it is seen that 1): Pr has a finite

+

termination point t iff u is not locally integrable, i.e.

t et
IO ds p(s) = » for some 0 < t < =, and in that case IO ds u(s) = «
and j; ds u{s) <= for t < tT ; 2): Pr has o« as termination
point but does not allow absorption iff u 1is locally but not global-
ly integrable, i.e. J'g ds p(s) <o for 0 <t <« and
j‘; ds u(s) =« ; 3): Pr allows absorption iff u 1is globally inte-

grable, i.e. I: ds u{s) < =, and in that case the absorption proba-

bility equals exp(—fog ds p(s)) .

If for some to >0, Pr(to,w]= 1, then of course ul(t) = 0 for
0 <t < t0 and (1.2) may be written
t
G(t) = exp(-J ds u(s)> (toit < o)
o
with G(t) =1 for t < ty -
1.3. Example. If Pr has intensity u, then for any 1:0 > 0 the
conditional probability Pr(-| (to,m]) has intensity function
0 (0 < t < tO)
M o (B) ={
o} u(t) (to <t <@
and survivor function
1 {0 < t < to)
Glg (B = { t
0 exp(-/ ds u(s)) (t0 < t < o). 0
t

0



The following result will be useful later.

1.4. Proposition. Let T be a (0,o]~valued random variable such that
the distribution of T has a smooth density with intensity u and

let 0 < < o be a constant. Then, assuming that f:ds uis) = =,

Yo

the random variable

1 T
U=—J ds u{s)
o Jo

follows an exponential law with rate By -

Proof. Define H(t) = jg ds p(s) and denote by H_1 the right-con-
tinuous inverse of H: H-1 (0) = inf{t>0: H(t) > u}. Since
IOOB ds u(s) = =, H '(u is defined for all 0 < u < o and further-

1

more satisfies I-I(H—‘l (u)) = u, H(t) >u for t > H (u) . Thus, if

P denotes the probability on the probability space where T is de-

fined, for any 0 < u < o

P(U>u) =R > ugw) =B(T > B (uy0)

= exp(-HE (ugw))) = e7HOY . 0



1.2. The definition of one-dimensional counting processes.

A one-dimensional counting process may be thought of as a stocha-
stic process recording at any given time t the number of certain
events having occurred before time t. This is formalized in Definit-
ion 2.1 below.

Let (Q, A, At,Eﬂ be a probability space with a filtration, i.e.

(Q, A,IP) in a usual probability space and (A t) is a family of

t>0
sub g-algebras of A such that A < A, when s < t. A stocha-

stic process X = (Xt)tzo defined on (Q,A) is adapted to (At) if
each Xy is At—measurable.

(Note: when writing (It)t>0 for some indexed family of objects,
the indexing set is [0,»), so there is an It for each 0 < t < =

but not apriori for t = ).

2.1. Definition. A one-dimensional counting process on a filtered

probability space (Q,A,At,nn B is an adapted stochastic process
K = (Kt)t>0’ each K, taking values in iﬂo = {0,1,...,»} with
E(Ko = 0) =1 and such that almost all sample paths are non-decreas-

ing and right-continuous everywhere, increasing only by Jjumps of size

1.

The process is stable if E(Kt < ) =1 for all t > 0.

The process allows absorption if IP(sup Kt < ) > 0. I
20

Recall that the sample paths for K = (Kt)t>0 are the functions

t - Kt(m) obtained for any w € ©. The definition demands that for
w outside a P-null set, the sample path determined by « be right-
continuous. The topology on ﬁo to be referred to when making this

statement precise is the one obtained by adjoining <« as the one-point

compactification to NO = {0,1,...}, the set of non-negative integers,

equipped with the discrete topology.



It is readily checked that with this choice for the topology on
WN,, almost all sample paths will have left-limits everywhere.

since we shall only discuss one-dimensional counting processes
in this section we shall for simplicity refer to such a process as a
counting process.

If we are just given a probality space (Q,A,TP) and a process
K = (Kt) £0 with almost all sample paths having the analytic proper-
ties requ—ired by Definition 2.1, it is always possible to find a
filtration (Kt) £50 such that on (Q ,A,Kt,]P) is a counting process:

define K_ = g(K_)

t &) sct’ the smallest sub o-algebra of A with respect

to which all Ky s <t become measurable. If we are given a count-
ing process K on a filtered space (Q,A,At,IP) , then X 1is also a
counting process on (Q,A,Kt,]P) and Kt c At so that (Kt) 0 is
the smallest filtration with respect to which K is a counting pro-
cess. We shall call \Kt) £50 the self-exciting filtration for the
process K. B
Given a counting process K = (Kt) £50° consider the mapping

W - (Kt(‘”))t>0 which to every w € Q a;sociates the corresponding
sample path ;f the process. This mapping T carries each w into an

element of the function space i\]—»o[o,m)

of all functions (paths)
defined on [0,») taking values in ]—N'o, which, for almost all w,
has specific analytic properties. Taking out a relevant subset W

of ]NO[O’Q) and equipping it as a measurable space one may therefore
transform the original probability IP on { into a probability

P = T(IP) on W, which in a canonical fashion describes the probabi-

litic properties of the process K. These considerations lead to

Definitions 2.2 and 2.3.

2.2. Definition. The full counting process path-space is the subset

W of ﬂo[o'm) consisting of those paths w: [0,®) » N, with

0

w{0) = 0 which are everywhere right-continuous and non-decreasing,



increasing only in jumps of size 1.

The stable counting process path-space is the subset W of W

v
(=]

consisting of those paths w € W for which w(t) < » for all t >

From purely theoretical considerations, the full space W is the
natural one to use as will be apparent from the next subsection. But
for most statistical applications the stable space W is the appropri-
ate one.

For t > 0, define Nt: W ﬂw-*iﬁo by Nt(w) = w{t) and let

F denote the smallest g-algebra of subsets of W (W) that makes all

N, measurable: F = o{(Ny = n): n¢ Ny, t > 0). Also, let Fy be

the g-algebra generated by (N_) (Thus (Ft) is a filtration on

s’ s<t”
W W) and N = (Nt) is adapted to this filtration). Note that

Fo = {%,W} ({#,W}). Finally define N_ = %%mﬂNt.

It is possible to describe the g-algebra F in a different way.

t

on W (W) introduce an equivalence relation T by requiring that

W o w' iff w(s) =w'(s) for 0 < s < t. Then F € Ft iff F € F

and F is a union of ;-equivalence classes, which are then alsoc re-
ferred to as the atoms of Fy- (Sketch of proof: clearly the collec-
tion of sets which are F-measurable unions of g-equivalence classes,

and since obviously (N_ = n) € F for n € N

form a g=-algebra s

Fer t 0’
0 <s<t, wehave F_ < F,. Conversely the mapping Sp: W » W given
by Nsos

;1F =F for F € Ft wherefore also ?t < F.). Using this equiva-

£ = Ng ¢ (s>0) is F, -measurable and has the property that
S

lence class description of F to show that a random variable defined

£
on (W,F) ((W,F)) is F,-measurable, amounts to showing that it is
constant on each Fy-atom. The o~algebra Fy contains all information
about the behaviour of the N, on the time interval [0,t]. It is
customary in general process theory to consider the slightly larger

g-algebras F However, in the case of the counting

= N .
t#+ s:'>0Ft+€
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process path spaces W and W, we have that Ft+ = F the reason

t,
being that knowing exactly the behaviour of a path w on [0,t] tell
us also the behaviour of w on [0O,t+c] for some ¢ > 0, viz.

w(s) = w(t) for t < s < t+¢ by right-continuity. (Formally a proof

that Ft+ = Ft may be given as follows: it is shown that Ft+ con-

sists of the sets which are F~measurable unions of equivalence clas-

ses for the equivalence relation ~ given by w =, w' 1ff for some

tt t+
e = g(w,w') >0, w t:a w'; then it is observed that E; is the same
as z).

We have now eguipped the path-spaces W and W with a measurable

structure and are ready to give the next fundamental definition.

2.3. Definition. A canonical one-dimensional counting process is a

probability on (W,F). A stable canonical one-dimensional counting
process is a probability on (W,F). i

For convenience we shall abbreviate canonical counting process
as CCP.

Thus, for CCP's the family of random variables defining the pro-
cess 1s always the family (Nt) of projections and a CCP is cahracte-
rized exclusively as a probability on W or W.

If P is a CCP we shall also use the symbol P to denote P-
expectation. Thus, if F € f and U is real-valued and F-measurable
we write P(F), P(U), P{U;F) for respectively the P-measure of the
set F, the integral [dP U and the integral IFdP u.

Note that any CCP, P, is completely determined by its collection
of finite-dimensional distributions, i.e. the P-distribution of any
vector (N_ ,...,N

where r € W, 0 < t, < ... < t_.

)
t1 tr 1 r
Suppose that K = (K

t)tzo is a counting process on (Q,A,At,m)

in the sense of Definition 2.1. Taking away a IP-null set N, the

mapping 7T discussed above becomes a measurable mapping from
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(Q~N, A(Q~N)) to (W,F) (to (W,F) if K is stable) and hence
induces a probability P = T (IP) on (W,F) ((W,F)), the canonical

counting process generated by K.

By the transformation some information may have been lost, but all
information contained in the process itself has been retained: for
every t > 0, knowing the restriction of P to Ft determines the
restriction cf I to Kt’ and complete knowledge of P determines
the restriction of 1IP to K, the smallest sub c-algebra of A con-

taining the members K of the self-exciting filtration.

t
In these notes we shall mainly be concerned with CCP's. In stati-
stical terms this means that we shall consider only the counting pro-

cess itself as observable.

2.4. Example. The most important of all counting processes is the
Poisson process. For 0 < y < « a constant, the canonical Poisson
process with rate (or intensity) p is the probability Hu on the

stable space (W,F) with respect to which (Nt) has stationary

>0
independent Poisson increments: for r € W, 0= tO < t1 < .. < tr’
n1,...,nr € mo
N
(N, -N =n,, i=1,...,xr) = 1 I (N_ -N = n,)
e Ty if e Tl T

and for 0 < s < t, n € N
n
N = _ (ule-s)) -ult-s)
nu(Nt N n) o1 e
These distributional properties may also be written
n!

n
Hp(ﬂu_Nt = nIFt) = (ulu-t)) e-U(u_t)

for 0 <t <u, n¢€ NO.

A CCP P is Markov if for all t < u, n € mo



