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Sreface

This book introduces the quantum theory of finite many- -body systems.
Finite systéms are met with in.a variety of fields. Examiplés ‘are, nuclei,
atoms, molecules and also solitons in particle physics, vortex ltines in
quantum liquids, etc. Despite the specialized terminologies itiany of the
methods and approximation schemes used in différent filds are strikingly
similar. We give a unified presentation of the various methods, hoping that

 this will contribute to bridging the communication gaps between disciplines.

In contrast to most texts on the many-body problem,; this book stresses
the finite-system aspécts of the theory. Thus special attention is given to
the mean field approximations, to the ensuing broken symmetries, and to
the associated collective'motions such as rotatidns. The formatism is, of
course, quite general and appligs to-infinite as well as finite systems:.
Howeyer, some specific features of systems with infinite numbers of de-
grees of fmodom are deliberatoly left out, such as the thermodynamic limit,
critical phenomena, and the elimination of ultraviolet divergenceg:«!«i3::

The book is divided into four parts: Part I introduces thie basic math-
ematical tools: second quantization with special emphasis: o coherent '
statos, canionical transformations required to diagonalize quadratic haiil-
tonians, Wick theorems and the resulting diagram expansions; and oscil- -
lator models of fisite systems. The basic tools are then applied in parts -

I1-1V, which provide independent but complementary descriptions of the

dynaxmcs of many-particle systems. Part H presents mean field. APProxi--
mations, which play anessential tole in the description of finite -systems.
We.emphasize the problem of broken symmetries resulting: from the méan
field approximations, as well as the agsociated collective motions. Quanti- .
zation' of collective modes is also-discussed in terms of:redently developed:-
path-integral methods: Part I1I is & review of perturbation theory in terms:
of both time-dependeént Feynman diagrams and time-indepeddent Gold-
stone. - diagrams. Self-consistent. schemes are : formulated - in- terms: of .
symmetry-conserving approximations. In part IV:.we discuss. variational
methads based on correlated: wavefunetipns, including spin;correlations:: .
The approximations schemes -are Iormulatgd for fermions and hosond:at : .
zero and @t nonzero temperature. . SRR ECTSTR
The book has been written after several years of lecturmg on manyqboqy«
problems. It has been conceived as a gradyateevel course. The materia) is
oresentad in a self-contained form, and sufficient detail is given to allow g,
reader with only an elementary knowledge of quantum; mechanics to
rederive for himself all the results. Each chapter is followed by problems
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(190 altogether). These problems have been designed to help the reader
practice the theory, as well as to expand on specific points raised in the text.

The book has also been conceived as a research tool and a reference for
the working physicist. It provides the background required to understand
the more specialized literature, and it includes some of the most recent
developments. We have not included physical applications, which would
have of necessity been superficially described in a book: of this nature.
Applications and further developments of the theory can be found in the
references given at the end of each chapter. We preferentially cite reviews,
where further references can be found. We also cite those papers to which
our presentation is most related. Finally, we cite some recent applications.
We have made no effort to retrace the historical development of the field,
nor have we attempted to make 2n exhaustive bibliography. We apologize
to all those who may justly feel that their work has not been adequately
recognized.

The book is admittedly influenced by the prevailing style at the Service de
Physique Théorique in Saclay. We express:special thanks to Roger Balian
and Michel Gaudin for continuous discussions and generous help. We have
greatly benefited from the teachings of Bernard Jancovici, Cyrano de
Dominicis, Claude Itzykson, and the late Claude Bloch. We owe to numer-
ous physicists more than can be reckoned from the text. Throughout the
years we have been deeply influenced by contacts with Manoj Banerjee,
Gordon Baym, Georges Bertsch, Aage Bohr, Gerry Brown, Carl Levinson,
Ben Mottelson, Phil Siemens, and Igal Talmi. We wish to thank Paul
Bonche, Edouard Brezin, David Brink, Stefano Fantoni, Daniel Gogny,
Itzhak Kelson, Claude Mahaux, Gene Marshalek, John Negele; Henri
Orland, John Owen, Fabre de la Ripelle, Mannque Rho, Hartmut Schulz,
Roger Smith, Dominique Vautherin, Felix Villars, and John Zabolitzky for
discussions which have led us to a better understanding of specific aspects
of the material presented in this book. During the five years needed to
complete this work, one of us (J.-P.B.) spent two years at the University
of Illinois at Urbana-Champaign. He would like to thank the Physics
Department of this university for its stlmulatmg atmosphere and warm
hospitality.

We thank the Service de Physique Théorique for the material aid re-
quired to complete the manuscript. We are very grateful to Madeleine
Porneuf for reading the proofs.
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