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Preface

During the past twenty years (1964-84) new concepts of convergence for
sequences of functions and operators have been appearing in mathematical
analysis. These concepts are specially designed to approach the 1imit of
sequences of variational problems and are called "variational convergences".
With each type of variational problem (minimization, maximization, min-max,
the saddle-value problem,...) is associated to a particular concept of con-
vergence.

In this book we focus our attention on minimization problems and develop
a convergence theory for sequences of functions, called epi-convergence,
which may be regarded as the "weakest" notion which allows to approach the
limit in the corresponding minimization problems. This concept of convergence
thus has natural applications in all branches of optimization theory - from
stochastic optimization, optimal control, numerical analysis and approxi-
mation to calculus of variations and perturbation problems in physics.

The book is divided into three parts. In Chapter 1, epi-convergence is
introduced in a general topological setting as the natural concept of con-
vergence that é]]ows to approach the Timit of sequences of minimization
problems. Relying only on its definition, we show how the technique of epi-
convergence may be used to solve various limit problems in analysis. Examples
have been chosen which, because of their physical interest and the difficulties
they present (in these examples, intuition by itself is not of much heTp in
identifying the right limit problem), have contributed to the development of
well-adapted mathematical tools, to which we refer when we speak of variational
convergences.

Composite materials (fibred, stratified, porous,...) play an important role
in many branches of physical engineering. A good approximation of the macro-
scopic behaviour of such materials may be obtained by letting the parameter e,
which describes the fineness of structure, approach zero in the equations
describing phenomena such as heat conduction and elasticity. This limit
analysis process is called homogenization. Many examples considered here come
from the works of Bensoussan, Lions and Papanicolaou [11, Sanchez-Palencia [9],



Cioranescu and Murat [1], Tartar [2], and Marchenko and Hruslov [1]. Epi-
convergence provides a precise and flexible tool for such problems. It
enhances their topological aspects and can easily be combined with other tools
such as convex analysis and measure theory. For some nonlinear problems, such
as homogenization of elastoplastic torsion (cf. Attouch [6], Carbone and
Salerno [1]) and homogenization of fissured elastic materials (cf. Attouch

and Murat [2]) it is the only proof we have, at the present time, of this
1imit analysis process.

A second type of example comes from perturbation theory: "singular"
perturbation problems arise naturally when a physical parameter (such as
conduction, viscosity, mean free path of a particle, etc), or an economic one
(such as a cost) becomes very small or very large with respect to the others.
Typical applications are reinforcement problems and shells in mechanical
engineering.

Our purpose in Chapter 2 is to give a complete exposition of the topological
properties of epi-convergence. A large part of this chapter owes much to De
Giorgi and Wets. We pay particular attention to the Moreau-Yosida approxi-
mation by inf-convolution which is developed for general real-valued functions
defined on a metric space:

Vi >0 Vu € X Fk(u) =inf {F(v) + ?%-dz(u,v)}.
veX

Epi-limits of sequences of functions can be re-expressed in terms of point-
wise Timit of their Moreau-Yosida approximates. A topology is naturally
attached to the pointwise convergence of these approximates. In the lTocally
compact case (or in an equivalent way when considering uniformly "inf-compact"”
functions), one can prove that this topology induces epi-convergence. It
should be noted that, in general, epi-convergence is not attached to a topo-
logy. It is only in certain particular cases (1like those described above
which, indeed, cover a large number of applications) that there exists a
topology @ for which

F=o-linfM e i S F.
In a number of applications such as stochastic optimization a precise approach
is to consider functionals as elements of such a topological (compact metric)
space (cf. Salinetti and Wets [4], Dal Maso and Modica [3]).



The third and final chapter is devoted to the study of epi-convergence of
sequences of convex functions. For simplicity, we restrict our attention to
the case of X, a reflexive Banach space. In this case, two topologies play
an important role: the strong and the weak topologies.

In this infinite-dimensional framework the continuity property of the
Young-Fenchel transformation can be formulated as follows (refer to Theorems
3.7 and 3.9 for precise assumptions):

F=w-Tim F" e F* = s-Tim Fn*
e e

Therefore weak and strong topologies are exchanged when considering epi-
convergence of convex functions and of their conjugates. These considerations
lead to the introduction of the so-called Mosco-convergence, which is epi-
convergence for both strong and weak topologies and which, from the above
considerations, has the following basic property:

n 3 n* .
F" =+ F in Mosco sense <« F' - F* in Mosco sense.

This property explains the importance of this concept in the study of stability
properties, approximation, etc, in convex optimization. Historically, it
appeared (when considering infinite-dimensional spaces) earlier than the more
general concept of epi-convergence with respect to a given topology. Let us
give its formulation: a sequence x> J-e, +«~] Mosco-converges to F if

for every x € X, there exists (xn)nEN strongly converging to x in X

such that Fn(xn)  Fix)s

for every weakly converging sequence Xp X, F(x) < 1im inf Fn(xn).

Mosco-convergence is indeed equivalent to the pointwise convergence of the
Moreau-Yosida approximates: N

F" > F in Mosco sense < for every A > 0, for every x € X F?(x) -> FA(x)
where

x) = min {F"(u) + ?%-HX‘U||§}-

(
X uex

Therefore there exists a topology on the class of closed convex functions



called the topology of Mosco-convergence, inducing this convergence. When X
is separable, this topological space is a Polish space that is metrizable,
separable and complete for a metric inducing the topology.

In convex analysis, in addition to the conjugation operation, another
concept plays a fundamental role: this is the subdifferential operation

F > oF
where 9F:X - X*, the subdifferential of F, is given by
OF = {(u,f) € X x X*/F(v) >F(u) + <f,v-u> for every v € X}.

A natural question is: given a sequence of closed convex functions

Fh:x > J-~, +=] which is epi-convergent, what is the corresponding notion of
convergence for the sequences of operators (oF":x > X*3 n=1,2,...}? Indeed,
historically it was the converse of this question that was asked: subdiffer-
entials of convex functions form an important subclass (nonlinear version of
self-adjoint operators) of maximal monotone operators. For such operators a
good convergence concept is graph-convergence which is equivalent to the
pointwise convergence of the resolvents. This concept, introduced by Kato
[1] for linear monotone operators, has been extended by Browder [2], Brezis
[11, [2] to nonlinear maximal monotone operators and by Benilan [1] to
accretive operators. It makes it possible to attack convergence of semi-
groups, approximation and perturbation of evolution equations governed by
such operators.

The equivalence between graph-convergence of subdifferential operators
{aF"; n = 1,2,3...} and Mosco-convergence of functions {Fn; n=1,2,...} was
proved by the author around 1976 (Attouch [2], [4], cf. also Matzeu [11,
Zolezzi [4], Sonntag [1]). This links the two theories, convergence of
functions and convergence of operators, which in the convex case turn out to
be equivalent. Moreover one obtains convergence of elements attached to
such operators, such as spectrum (in the linear case), semigroups.

In the last few years many extensions and promising new fields of appli-
cation of variational convergence have appeared in the literature:

- Convergence of saddle-value and min-sup problems: Attouch and Wets (31,
[4], Cavazzuti [1], with a view to applications to critical point problems
in economics and mechanics.



The study of Timit analysis problems for systems and higher-order problems
in mechanics: Brillard [2] for Stokes equations and Darcy's law in porous
media, Aze [1] for elasticity and the dual formulation of the homogenization
formula expressed in terms of constraint tensor (cf. also Suquet [2]),
Picard [1] for the biLaplacian, Attouch and Murat [2] for homogenization

of fissured elastic materials, etc.

The study of variational convergence in non-reflexive Banach spaces: Picard
[1] for minimal surface problems with varying unilateral or bilateral con-
straints, extensions to capillarity, plasticity etc.

The study of stochastic optimization problems, for example in statistical
decision theory (Salinetti and Wets [4]), in stochastic homogenization

(Dal Maso and Modica [3]) etc.

The study of convergence problems for evolution equations, control problems,
rate of convergence (Attouch and Wets [5]) etc.
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Introduction

The concept of variational convergence seems to appear for the first time in
the work of Wijsman [2] (1964-66) in statistical decision theory, where it
arose in the study of the continuity properties of the application

C & s(C)

which associates with a closed convex subset of R™ its support function

s(Cyx*) = sup <x*,x>.
Xx€eC
When considering convex subsets C contained in a fixed ball of Rm, Hausdorff
metric provides a quite natural measure for perturbations of sets, and

" —> C for Hausdorff metric < vx* ¢ R" s(Cn,x*) > s(Cn,x*).

n->+ow

However, when considering possible unbounded subsets of Rm, Hausdorff metric
is no longer an adequate concept and one has to introduce the more general
notion of set convergence, also called Kuratowski convergence (equality between
1im inf and Tim sup). The question that naturally arose was that of finding
the corresponding concept of convergence for the associated support functions.
Here it is not the pointwise convergence of the support functions (as in the
case of the Hausdorff metric) that gives the correct answer, but rather the
epi-convergence (called by Wijsman "infimal convergence").

Epi-convergence thus stems naturally from set convergence theory and has
been introduced to study the continuity properties of duality operations.
Indeed, epi-convergence of a sequence of functions F = 1ime F" s equivalent
to the set convergence of their epigraphs, epi Fls epi F, where epi F =
{(x,1) € X x R/x >F(x)}. This justifies the terminology!

Moreover, the continuous dependence of the support function s(C,-) on C
turns out to be a particular case of the following fundamental result: the
Young-Fenchel transformation is continuous with respect to epi-convergence

*
F=lim, F* e F* = Tim_ F"
e e



where Fn, F are closed convex functions and F*(x*) = sup {<x*,x> - F(x)}.

m
x€R
At this stage the theory has been developed in a satisfactory way but only

for the finite-dimensional case. This restriction blurs some important
topological features of the theory that cannot be ignored in infinite-dimen-
sional spaces. Active mathematical orientation research, mainly arising from
applications to optimization and decision theory (Wets [1], Salinetti and
Wets [1]..., Back [1], Vervaat [1], MacLinden [1]) bears a natural relation
to the work of Wijsman.

The next step in the development of the theory came from quite a different
direction and can be traced to the work of researchers such as Stampacchia
and Lions on variational inequalities. In order to study the convergence of
solutions of approximations of variational inequalities (such -as Galerkin
approximation), Mosco [2] (1967-73) and Joly [1] (1970-76) extended the
earlier results to infinite-dimensional spaces. The theory was still limited
to the case of convex functions and to topologies such as weak and strong
topologies on (reflexive) Banach spaces.

The concept in a general topological setting has finally been delineated
by De Giorgi [1] (1973-83) and the Italian mathematical school (Spagnolo [1],
Carbone and Sbordone [2], Buttazzo [1], Dal Maso [1], Modica [1], Boccardo
and Marcellini [1], etc). They were mostly concerned with the study of lower
semicontinuity and perturbation problems in calculus of variations. To that
end, a convergence theory for functions was developed, called I'-convergence,
(and a corresponding theory for operators, called G-convergence). This con-
tains as a particular case epi-convergence, which can be regarded as I'-con-
vergence specially adapted to minimization problems. The corresponding con-
cept for maximization problems is hypo-convergence, which can easily be
derived from epi-convergence by changing functions F into their opposites in
the definitions and statements. Recently the I'-convergence theory for saddle-
value problems, called epi-hypo-convergence (which includes the two above
concepts), has been developed by Attouch and Wets [3] and Cavazzuti A7,

As with all I-convergence concepts, the definition of epi-convergence only
requires a topological structure. Given (X,1), a topological space (which
for simplicity we assume here to be metrizable), and Fn, F:X >R, a sequence
of real (extended) valued functions, the sequence {Fn;n + + «} is said to be
T-epi-convergent to F at x € X if the two following conditions hold:



(i) there exists a convergent sequence Xy ——> x in (X,7) such that

(nte0)
F(x) > Tim sup F" (x,)s
n->+ow
(ii) for every convergent sequence X, ——> x in (X,7), F(x) < Tim inf F" (x N
(n—>+oo) n->+o

We then write F(x) = (T 11m F")(x). When this property holds for every
X € X, the sequence (F'5n =1 »25...} is said to be t-epi-convergent to F and
F=1- 11me " X
Let us first notice that when such convergence holds, the 1imit function
F is given by the formula

F(x) = min {lim F" (x )i Xp —-——-—>x}
N>+ n-+ow
When taking F = F°, a stationary sequence, F is equal to the t-lower semi-
continuous regularization of F°, Thus, epi-convergence includes as a parti-
cular case the r-closure operation. This is the origin of the above termi-
nology.

The fundamental variational property of epi-convergence can now be formu-
lated: let us take {Fn, F:X->R;n=1,2,...}, a sequence of real (extended)
functions which satisfies the condition that there exists a topology T on X
and a t-relatively compact subset K of X such that, for every n = 1,2,...,

inf F'(x) = inf F"(x).

XEX Xx€eK
Then, F = ¢ —11‘me =L implies the convergence of the corresponding minimization
problems (as h » + o):

inf P %) ——us inf F(x)

X€X (n>+w)  xex
and every t-cluster point x of a minimizing sequence (x € Argmin al N=1,25505)
minimizes F. (When there is uniqueness, there is convergence of the whole
sequence.) In general, epi- convergence is not implied by and does not imply
pointwise convergence. They are two separate concepts. There is, in fact,
one important case in which the two concepts coincide: this is when the
sequences of functions are monotonically increasing (or decreasing). This
explains the success of all monotone schemes in approximation theory.
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