


Essential Concepts in Molecular Pathology

Edited by

William B. Coleman, Ph.D.

Gregory J. Tsongalis, Ph.D.

Department of Pathology and Labor UNC Lineberger Comprehensive C University of North Carolina School Chapel Hill, NC

Department of Pathology
Dartmouth Medical School
artmouth Hitchcock Medical Center
Norris Cotton Cancer Center
Lebanon, NH

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Cover images provided by William Coleman and Gregory Tsongalis.

Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

Copyright © 2010, Elsevier Inc. All rights reserved. The material in this work is adapted from Molecular Pathology: The Molecular Basis of Human Disease, edited by William B. Coleman and Gregory J. Tsongalis (Elsevier, Inc. 2009).

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Notice

Medicine is an ever-changing field. Standard safety precautions must be followed, but as new research and clinical experience broaden our knowledge, changes in treatment and drug therapy may become necessary or appropriate. Readers are advised to check the most current product information provided by the manufacturer of each drug to be administered to verify the recommended dose, the method and duration of administrations, and contraindications. It is the responsibility of the treating physician, relying on experience and knowledge of the patient, to determine dosages and the best treatment for each individual patient. Neither the publisher nor the authors assume any liability for any injury and/or damage to persons or property arising from this publication.

Library of Congress Cataloging-in-Publication Data APPLICATION SUBMITTED

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374418-0

For information on all Academic Press publications

visit our Web site at www.elsevierdirect.com

Printed in China 10 9 8 7 6 5 4 3 2 1

> Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

Dedication

This textbook contains a concise presentation of essential concepts related to the molecular pathogenesis of human disease. Despite the succinct form of this material, this textbook represents the state-of-the-art and contains a wealth of information representing the culmination of innumerable small successes that emerged from the ceaseless pursuit of new knowledge by countless experimental pathologists working around the world on all aspects of human disease. Their ingenuity and hard work have dramatically advanced the field of molecular pathology over time and in particular in the last two decades. This book is a tribute to the dedication, diligence, and perseverance of the individuals who have contributed to the advancement of our understanding of the molecular basis of human disease. We dedicate Essential Concepts in Molecular Pathology to our colleagues in the field of experimental pathology and to the many pioneers in our field whose work continues to serve as the solid foundation for new discoveries related to human disease. In dedicating this book to our fellow experimental pathologists, we especially recognize the contributions of the graduate students, laboratory technicians, and postdoctoral fellows, whose efforts are so frequently taken for granted, whose accomplishments are so often unrecognized, and whose contributions are so quickly forgotten.

We also dedicate Essential Concepts in Molecular Pathology to the many people that have played crucial roles in our successes. We thank our many scientific colleagues, past and present, for their camaraderie, collegiality, and support. We especially thank our scientific mentors for their example of research excellence. We are truly thankful for the positive working relationships and friendships that we have with our faculty colleagues. We also thank our students for teaching us more than we may have taught them. We thank our parents for believing in higher education, for encouragement through the years, and for helping our dreams into reality. We thank our brothers and sisters, and extended families, for the many years of love, friendship, and tolerance. We thank our wives, Monty and Nancy, for their unqualified love, unselfish support of our endeavors, understanding of our work ethic, and appreciation for what we do. Lastly, we give a special thanks to our children, Tess, Sophie, Pete, and Zoe, for providing an unwavering bright spot in our lives, for their unbridled enthusiasm and boundless energy, for giving us a million reasons to take an occasional day off from work just to have fun.

> William B. Coleman Gregory J. Tsongalis

List of Contributors

Dara L. Aisner, M.D., Ph.D.

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA

M. Michael Barmada, Ph.D.

Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA

Philippe L. Bedard, M.D.

Translational Research Unit, Jules Bordet Institute Université, Libre de Bruxelles, Brussels, Belgium

David O. Beenhouwer, M.D.

Department of Medicine, David Geffen School of Medicine at University of California, and Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA

Jaideep Behari, M.D., Ph.D.

Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Maria Berdasco, M.D.

Cancer Epigenetics and Biology Program, Catalan Institute of Oncology, Barcelona, Catalonia, Spain

Carlise R. Bethel, Ph.D.

Sidney Kimmel Comprehensive Cancer Center, Department of Pathology, and the Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Joseph R. Biggs, Ph.D.

Departments of Pathology and Biological Sciences, University of California, San Diego, La Jolla, CA, USA

Grant C. Bullock, M.D., Ph.D.

Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA

Sheldon M. Campbell, M.D., Ph.D., F.C.A.P.

Department of Laboratory Medicine, Yale University School of Medicine Pathology and Laboratory Medicine, VA Connecticut Healthcare System, West Haven, CT, USA

Wai-Yee Chan, Ph.D.

Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, NIH, Bethesda, MD, and Departments of Pediatrics, Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D.C., USA

William B. Coleman, Ph.D.

Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA

Mattia Cremona

George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, VA, USA

Angelo M. De Marzo, M.D., Ph.D.

Sidney Kimmel Comprehensive Cancer Center, Department of Pathology, and the Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Phuong Dinh, M.D.

Translational Research Unit, Jules Bordet Institute Université, Libre de Bruxelles, Brussels, Belgium

Vladislav Dolgachev, Ph.D.

Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA

Virginia Espina, M.S., M.T.

George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, VA, USA

Manel Esteller, Ph.D

Cancer Epigenetics and Biology Program, Catalan Institute of Oncology, Barcelona, Catalonia, Spain

Carol F. Farver, M.D.

Director, Pulmonary Pathology, Vice-Chair for Education, Pathology and Laboratory Medicine Institute, Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH, USA

William K. Funkhouser, M.D., Ph.D.

Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA

Avrum I. Gotlieb, M.D.C.M.

Department of Pathology, Toronto General Research Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

Robert F. Hevner, Ph.D., M.D.

Department of Neurological Surgery, Division of Neuropathology, Department of Pathology, University of Washington School of Medicine, Harborview Medical Center, Seattle, WA, USA

W. Edward Highsmith, Ir., Ph.D.

Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN. USA

C. Dirk Keene, M.D., Ph.D.

Department of Neurological Surgery, Division of Neuropathology, Department of Pathology, University of Washington School of Medicine, Harborview Medical Center, Seattle, WA, USA

Wolfgang Kemmner, Ph.D.

Department of Surgery and Surgical Oncology, Robert-Rössle-Klinik Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany

Nigel S. Key, M.D.

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA

Hong Kee Lee, Ph.D.

Department of Pathology, Dartmouth Medical School, Dartmouth Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, NH, USA

Joel A. Lefferts, Ph.D.

Department of Pathology, Dartmouth Medical School, Dartmouth Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, NH, USA

John J. Lemasters, M.D., Ph.D.

Center for Cell Death, Injury and Regeneration, Departments of Pharmaceutical & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA

Markus M. Lerch, M.D

Department of Internal Medicine A, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany

Lance A. Liotta, Ph.D.

George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, VA, USA

Alessandra Luchini, Ph.D.

George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, VA, USA

Amber Chang Liu, M.Sc.

Department of Pathology, Toronto General Research Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

Karen Lu, M.D.

Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Nicholas W. Lukacs, Ph.D.

Professor of Pathology, Director Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA

Alice D. Ma, M.D.

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA

Julia Mayerle, Ph.D.

Department of Internal Medicine A, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany

Kara A. Mensink, M.S., G.C.G.

Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

Samuel Chi-ho Mok. Ph.D.

Department of Gynecologic Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX,

Satdarshan (Paul) Singh Monga, M.D.

Director-Division of Experimental Pathology, Associate Professor of Pathology and Medicine, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA

Thomas J. Montine, M.D., Ph.D.

Division of Neuropathology, Department of Pathology, University of Washington, Harborview Medical Center, Seattle, WA, USA

Jason H. Moore, Ph.D.

Computational Genetics Laboratory, Norris-Cotton Cancer Center, Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, NH, USA

Amy K. Mottl, M.D., M.P.H.

Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA

Karl Munger, Ph.D.

Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

Zoltan Nagymanyoki, M.D., Ph.D.

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

William G. Nelson, M.D., Ph.D.

Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, and the Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Carla Nester, M.D., M.S.A.

Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA

Margret D. Oethinger, M.D., Ph.D.

Director of Clinical Microbiology and Molecular Pathology Providence Portland Medical Center, Portland, OR, USA

Alan L.-Y. Pang, Ph.D.

Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA

Emanuel F. Petricoin, III, Ph.D.

George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, VA, USA

Ashley G. Rivenbark, Ph.D.

UNC Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

C. Harker Rhodes, M.D., Ph.D.

Norris-Cotton Cancer Center, Department of Pathology, Dartmouth Medical School, Lebanon, NH, USA

Tara C. Rubinas, M.D.

Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA

Reinhold Schafer, Ph.D.

Laboratory of Molecular Tumor Pathology, Charité – Universitätsmedizin Berlin, Berlin, Germany

Matthias Sendler, Ph.D.

Department of Internal Medicine A, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany

Antonia R. Sepulveda, M.D., Ph.D.

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA

Christine Sers. Ph.D.

Laboratory of Molecular Tumor Pathology, Charité – Universitätsmedizin Berlin, Berlin, Germany

Lawrence M. Silverman, Ph.D.

Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA

Natasa Snoj, M.D.

Translational Research Unit, Jules Bordet Institute Université, Libre de Bruxelles, Brussels, Belgium

Joshua A. Sonnen, Ph.D.

Division of Neuropathology, Department of Pathology, University of Washington, Harborview Medical Center, Seattle, WA, USA

Christos Sotiriou, M.D., Ph.D.

Translational Research Unit, Jules Bordet Institute Université, Libre de Bruxelles, Brussels, Belgium

Gregory J. Tsongalis, Ph.D.

Department of Pathology, Dartmouth Medical School, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, USA

Vesarat Wessagowit, M.D., Ph.D.

The Institue of Dermatology, Rajvithi Phyathai, Bangkok, Thailand

David C. Whitcomb, M.D., Ph.D.

Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh,

Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Kwong-kwok Wong, Ph.D.

Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Dani S. Zander, M.D.

Professor and Chair of Pathology, University Chair in Pathology, Penn State Milton S. Hershey Medical Center/ Penn State University College of Medicine, Department of Pathology, Hershey, PA, USA

Dong-Er Zhang, Ph.D.

Departments of Pathology and Biological Sciences, University of California, San Diego, La Jolla, CA, USA

Pathology is the scientific study of the nature of disease and its causes, processes, development, and consequences. The field of pathology emerged from the application of the scientific method to the study of human disease. Thus, pathology as a discipline represents the complimentary intersection of medicine and basic science. Early pathologists were typically practicing physicians who described the various diseases that they treated and made observations related to factors that contributed to the development of these diseases. The description of disease evolved over time from gross observation to microscopic inspection of diseased tissues based upon the light microscope, and more recently to the ultrastructural analysis of disease with the advent of the electron microscope. As hospital-based and community-based registries of disease emerged, the ability of investigators to identify factors that cause disease and assign risk to specific types of exposures expanded to increase our knowledge of the epidemiology of disease. While descriptive pathology can be dated to the earliest written histories of medicine and the modern practice of diagnostic pathology dates back perhaps 200 years, the elucidation of mechanisms of disease and linkage of disease pathogenesis to specific causative factors emerged more recently from studies in experimental pathology. The field of experimental pathology embodies the conceptual foundation of early pathology - the application of the scientific method to the study of disease - and applies modern investigational tools of cell and molecular biology to advanced animal model systems and studies of human subjects. Whereas the molecular era of biological science began over 50 years ago, recent advances in our knowledge of molecular mechanisms of disease have propelled the field of molecular pathology. These advances were facilitated by significant improvements and new developments associated with the techniques and methodologies available to pose questions related to the molecular biology of normal and diseased states affecting cells, tissues, and organisms. Today, molecular pathology encompasses the investigation of the molecular mechanisms of disease and interfaces with translational medicine where new basic science discoveries form the basis for the development of new strategies for disease prevention, new therapeutic approaches and targeted therapies for the treatment of disease, and new diagnostic tools for disease diagnosis and prognostication.

With the remarkable pace of scientific discovery in the field of molecular pathology, basic scientists, clinical scientists, and physicians have a need for a source of information on the current state-of-the-art of our understanding of the molecular basis of human disease. More importantly, the complete and effective training of today's graduate students, medical students, postdoctoral fellows, medical residents, allied health students, and others, for careers related to the investigation and treatment of human disease requires textbooks that have been designed to reflect our current knowledge of the molecular mechanisms of disease pathogenesis, as well as emerging concepts related to translational medicine. Most pathology textbooks provide information related to diseases and disease processes from the perspective of description (what does it look like and what are its characteristics). risk factors, disease-causing agents, and to some extent, cellular mechanisms. However, most of these textbooks lack in-depth coverage of the molecular mechanisms of disease. The reason for this is primarily historical - most major forms of disease have been known for a long time, but the molecular basis of these diseases are not always known or have been elucidated only very recently. However, with rapid progress over time and improved understanding of the molecular basis of human disease the need emerged for new textbooks on the topic of molecular pathology, where molecular mechanisms represent the focus.

In this volume on Essential Concepts in Molecular Pathology we have assembled a group of experts to discuss the molecular basis and mechanisms of major human diseases and disease processes, presented in the context of traditional pathology, with implications for translational molecular medicine. Essential Concepts in Molecular Pathology is an abbreviated version of Molecular Pathology: The Molecular Basis of Human Disease, that contains several distinct features. Each chapter focuses on essential concepts related to a specific disease or disease process, rather than providing comprehensive coverage of the topic. Each chapter contains key concepts, which capture the essence of the topic covered. In place of long lists of references to the primary literature, each chapter provides a list of suggested readings, which include pertinent reviews and/or primary literature references that are deemed to be most important to the reader. This volume is intended to serve as a multi-use textbook that would be appropriate as a classroom teaching tool for medical students, biomedical graduate students, allied health students, advanced undergraduate students, and others. We anticipate that this book will be most useful for teaching students in courses where the full textbook is not needed, but the concepts included are integral to the course of study. This book might also be useful for students that are enrolled in courses that utilize a traditional pathology textbook as the primary text, but need the complementary concepts related to molecular pathogenesis of disease. Further, this textbook will be valuable for pathology residents and other postdoctoral fellows that desire to advance their understanding of molecular mechanisms of disease beyond what they learned in medical/graduate school, and as a reference book and self-teaching guide for practicing basic scientists and physician scientists that need to understand the molecular concepts, but do not require comprehensive coverage or complete detail. To be sure, our understanding of the many causes and molecular mechanisms that govern the development of human diseases is far from complete. Nevertheless, the amount

of information related to these molecular mechanisms has increased tremendously in recent years and areas of thematic and conceptual consensus have emerged. We hope that *Essential Concepts in Molecular Pathology* will accomplish its purpose of providing students and researchers with a broad coverage of the essential concepts related to the molecular basis of major human diseases in the context of traditional pathology so as to stimulate new research aimed at furthering our understanding of these molecular mechanisms of human disease and advancing the theory and practice of molecular medicine.

William B. Coleman Gregory J. Tsongalis Pathology is a *bridging discipline* between basic biological sciences and clinical medicine. Experimental pathologists apply the knowledge and tools developed in basic science disciplines including biochemistry, cell biology, physiology, and molecular biology to understand mechanisms of disease. Clinical pathologists integrate this basic mechanistic understanding of disease with clinical, anatomic, and biochemical information to diagnose disease in individual patients. In the 21st century, this integrated diagnosis of human disease is increasingly based on molecular markers and understanding of disease pathogenesis at the genetic level. This textbook provides fresh insight into the pathogenesis and treatment of disease based on the new discipline of molecular pathology.

Biomedical, clinical, and translational research is conducted by interdisciplinary teams. Team members classically have a primary knowledge base and tools in one discipline; however, they must also have the breadth of knowledge and curiosity to incorporate insights from other disciplines to understand, diagnose, and treat human disease. Essential Concepts in Molecular Pathology will provide students with a basic foundation in this discipline that will enable them to participate in emerging interdisciplinary research and its clinical applications in the future. For example, molecular pathologists work together with geneticists and ethicists in genetic screening of inherited diseases such as cystic fibrosis. Future research teams including diagnostic pathologists, microbiologists, and biomedical engineers will develop inexpensive, portable devices to diagnose emerging infectious diseases.

Pathologists are also leaders in a new medical paradigm in the 21st century-the practice and application of *personalized medicine* using individual patterns of gene and protein expression. This new diagnostic paradigm relies on bioinformatics and systems biology using genomic and proteomic technologies. Personalized medicine promises more accurate diagnosis of complex diseases and individualized therapeutic approaches that are currently being developed for breast, lung, and colon cancers. The practice of medicine in the 21st century will also require new insights into basic mechanisms of disease. In the post-genomic era, molecular pathologists are exploring epigenetic alterations associated with disease that are based on heritable changes in DNA and chromatin organization in the absence of DNA mutations. Molecular pathologists are collaborating with epidemiologists to identify molecular biomarkers reflecting prior environmental exposures or susceptibility to development of future disease. Biostatisticians and systems biologists will collaborate with pharmacologists and pathologists to develop novel therapeutic approaches for human disease. The ultimate goal of these diverse interdisciplinary teams is disease prevention through early recognition of disease susceptibility using molecular biomarkers with potential for early intervention to prevent neurodegenerative diseases, cancer, type 2 diabetes, and cardiovascular disease.

Welcome to the team!

Agnes B. Kane, M.D., Ph.D.

Professor and Chair, Department of Pathology and Laboratory Medicine, Director, NIEHS Training Program in Environmental Pathology, Co-Director, GAANN Interdisciplinary Training Grant in Applications and, Implications of Nanotechnology The Warren Alpert Medical School of Brown University.

Acknowledgements

The editors would like to acknowledge the significant contributions of a number of people to the successful production of *Essential Concepts in Molecular Pathology*.

We would like to thank the individuals that contributed to the content of this volume. The remarkable coverage of the state-of-the-art in the molecular pathology of human disease would not have been possible without the hard work and diligent efforts of the 65 authors of the individual chapters. Many of these contributors are our long-time colleagues, collaborators, and friends, and they have contributed to other projects that we have directed. We appreciate their willingness to contribute once again to a project that we found worthy. We especially thank the contributors to this volume that were willing to work with us for the first time. We look forward to working with all of these authors again in the future. Each of these contributors provided us with an excellent treatment of their topic and we hope that they will be proud of their individual contributions to the textbook. Furthermore, we would like to give a special thanks to our colleagues that co-authored chapters with us for this textbook. There is no substitute for an excellent co-author when you are juggling the several responsibilities of concurrently editing and contributing to a textbook. Collectively, we can all be proud of this volume as it is proof that the whole can be greater than the sum of its parts.

We would also like to thank the many people that work for *Academic Press* and *Elsevier* that made this project possible. Many of these people we have not met and do not know, but we appreciate their efforts to bring this textbook to its completed form. Special thanks goes to three key people that made significant contributions to this project on the publishing side,

and proved to be exceptionally competent and capable. Ms. Mara Conner (Academic Press, San Diego, CA) embraced the concept of this textbook when our ideas were not yet fully developed and encouraged us to pursue this project. She was receptive to the model for this textbook that we envisioned and worked closely with us to evolve the project into its final form. We thank her for providing excellent oversight (and for displaying optimistic patience) during the construction and editing of the textbook. Ms. Megan Wickline (Academic Press, San Diego, CA) provided excellent support to us throughout this project. As we interacted with our contributing authors, collected and edited manuscripts, and through production of the textbook, Megan assisted us greatly by being a constant reminder of deadlines, helping us with communication with the contributors, and generally providing support for details small and large, all of which proved to be critical. Ms. Christie Jozwiak (Elsevier, Burlington, MA) directed the production of the textbook. She worked with us closely to ensure the integrity of the content of the textbook as it moved from the edited manuscripts into their final form. Throughout the production process, Christie gave a tremendous amount of time and energy to the smallest of details. We thank her for her direct involvement with the production and also for directing her excellent production team. This was our second major project working with Mara, Megan, and Christie. It was a pleasure to work with them on this book. We hope that they enjoyed it as much as we did, and we look forward to working with them again soon.

> William B. Coleman Gregory J. Tsongalis

List of Contributors xiii

Preface xvii

Foreword xix

Acknowledgments xxi

PART

I Essential Pathology – Mechanisms of Disease

Chapter

1 Molecular Mechanisms of Cell Death 3

John J. Lemasters, M.D., Ph.D.

Introduction 3

Modes of Cell Death 3

Structural Features of Necrosis and Apoptosis 3

Cellular and Molecular Mechanisms Underlying

Necrotic Cell Death 5

Pathways to Apoptosis 8

Mitochondria 10

Nucleus 12

Endoplasmic Reticulum 12

Lysosomes 13

Concluding Remark 13

Acknowledgments 13

Key Concepts 13

Suggested Readings 14

Chapter

2 Acute and Chronic Inflammation Induces Disease Pathogenesis 15

Vladislav Dolgachev, Ph.D., and Nicholas W. Lukacs, Ph.D.

Introduction 15

Leukocyte Adhesion, Migration, and Activation 15

Acute Inflammation and Disease Pathogenesis 17

Pattern Recognition Receptors and Inflammatory

Responses 18

Chronic Inflammation and Acquired Immune

Responses 20

Tissue Remodeling During Acute and Chronic

Inflammatory Disease 22

Key Concepts 24

Suggested Readings 24

Chapter

3 Infection and Host Response 25

Margret D. Oethinger, M.D., Ph.D., and Sheldon M. Campbell, M.D., Ph.D.

Microbes and Hosts—Balance of Power? 25

The Structure of the Immune Response 25

Regulation of Immunity 26

Pathogen Strategies 26

The African Trypanosome and Antibody Diversity:

Dueling Genomes 27

Staphylococcus Aureus: The Extracellular

Battleground 29

Mycobacterium Tuberculosis and the

Macrophage 34

Herpes Simplex Virus: Taking Over 36

HIV: The Immune Guerilla 38

Perspectives 42

Key Concepts 42

Suggested Readings 42

Chapter

4 Neoplasia 45

William B. Coleman, Ph.D., and Tara C. Rubinas, M.D.

Introduction 45

Cancer Statistics and Epidemiology 45

Classification of Neoplastic Diseases 50

Characteristics of Benign and Malignant

Neoplasms 56

Clinical Aspects of Neoplasia 59

Key Concepts 60

Suggested Readings 61

PART

II

Concepts in Molecular Biology and Genetics

Chapter

5 Basic Concepts in Human Molecular Genetics 65

Kara A. Mensink, M.S., C.G.C., and W. Edward Highsmith, Jr., Ph.D.

Introduction 65

Molecular Structure of DNA 65

Modes of Inheritance 66

Central Dogma and Rationale for Genetic Testing 71 Allelic Heterogeneity and Choice of Analytical Methodology 74 Conclusion 75 Key Concepts 76 Suggested Readings 76

Chapter

6 The Human Genome: Implications for the Understanding of Human Disease 77

Ashley G. Rivenbark, Ph.D.

Introduction 77

Introduction 77
Structure and Organization of the Human Genome 77
Overview of the Human Genome Project 79
Impact of the Human Genome Project on the Identification of Disease-Related Genes 81
Sources of Variation in the Human Genome 83
Types of Genetic Diseases 83
Genetic Diseases and Cancer 84
Perspectives 86
Key Concepts 86
Suggested Readings 87

Chapter

7 The Human Transcriptome: Implications for the Understanding of Human Disease 89

Christine Sers, Ph.D., Wolfgang Kemmner, Ph.D., and Reinhold Schäfer, Ph.D.

Introduction 89

Gene Expression Profiling: The Search for Candidate Genes Involved in Pathogenesis 89

Transcriptome Analysis Based on Microarrays: Technical Prerequisites 91

Microarrays: Applications in Basic Research and

Translational Medicine 92

Perspectives 101

Key Concepts 101

Suggested Readings 103

Chapter

8 The Human Epigenome: Implications for the Understanding of Human Disease 105

Maria Berdasco, Ph.D., and Manel Esteller, Ph.D.

Introduction 105

Epigenetic Regulation of the Genome 105

Genomic Imprinting 106

Cancer Epigenetics 108

Human Disorders Associated with Epigenetics 110

Key Concepts 112

Suggested Readings 112

Chapter

9 Clinical Proteomics and Molecular Pathology 113

> Mattia Cremona, Virginia Espina, M.S., M.T., Alessandra Luchini, Ph.D., Emanuel Petricoin, Ph.D., and Lance A. Liotta, M.D., Ph.D.

Understanding Cancer at the Molecular Level: An Evolving Frontier 113
Microdissection Technology Brings Molecular Analysis to the Tissue Level 113
Serum Proteomics: An Emerging Landscape for Early Stage Cancer Detection 118
Key Concepts 122

Chapter

10 Integrative Systems Biology: Implications for the Understanding of Human Disease 125

M. Michael Barmada, Ph.D., and David C. Whitcomb, M.D., Ph.D.

Introduction 125

Data Generation 126

Suggested Readings 122

Data Integration 128

Modeling Systems 129

Implications for Understanding Disease 130

Discussion 132

Key Concepts 133

Suggested Readings 133

PART

Ш

Principles and Practice of Molecular Pathology

Chapter

11 Pathology: The Clinical Description of Human Disease 137

William K. Funkhouser, M.D., Ph.D.

Current Practice of Pathology 137

The Future of Diagnostic Pathology 140

Conclusion 141

Key Concepts 141

Suggested Readings 141

Chapter

12 Understanding Molecular Pathogenesis: The Biological Basis of Human Disease and Implications for Improved Treatment of Human Disease 143

William B. Coleman, Ph.D., and Gregory J. Tsongalis, Ph.D.

Introduction 143

Hepatitis C Virus Infection 143

Acute Myeloid Leukemia 146

Cystic Fibrosis 148

Key Concepts 151

Suggested Readings 151

Chapter

13 Integration of Molecular and Cellular Pathogenesis: A Bioinformatics Approach 153

> Jason H. Moore, Ph.D., and C. Harker Rhodes, M.D., Ph.D.

Introduction 153

Overview of Bioinformatics 154

Database Resources 155

Data Analysis 156

The Future 157

Key Concepts 158

Suggested Readings 158

PART

IV Molecular Pathology of Human Disease

Chapter

14 Molecular Basis of Cardiovascular Disease 161

Amber Chang Liu, and Avrum I. Gotlieb, M.D.C.M.

General Molecular Principles of Cardiovascular

Diseases 161

The Cells of Cardiovascular Organs 161

Atherosclerosis 164

Ischemic Heart Disease 167

Aneurysms 167

Valvular Heart Disease 168

Cardiomyopathies 169

Key Concepts 173

Suggested Readings 173

Chapter

15 Molecular Basis of Hemostatic and Thrombotic Diseases 175

Alice D. Ma, M.D., and Nigel S. Key, M.D.

Introduction and Overview of Coagulation 178 Disorders of Soluble Clotting Factors 177

Disorders of Platelet Number or Function 182

Thrombophilia 185

Key Concepts 187

Suggested Readings 187

Chapter

16 Molecular Basis of Lymphoid and Myeloid Diseases 189

Joseph R. Biggs, Ph.D., and Dong-Er Zhang, Ph.D.

Development of the Blood and Lymphoid

Organs 189

Myeloid Disorders 193

Lymphocyte Disorders 198

Key Concepts 202

Suggested Readings 202

Chapter

17 Molecular Basis of Diseases of Immunity 205

David O. Beenhouwer, M.D.

Introduction 205

Normal Immune System 205

Major Syndromes 208

Key Concepts 215

Suggested Readings 215

Chapter

18 Molecular Basis of Pulmonary Disease 217

Carol F. Farver, M.D., and Dani S. Zander, M.D.

Introduction 217

Neoplastic Lung and Pleural Diseases 217

Obstructive Lung Diseases 228

Interstitial Lung Diseases 235

Pulmonary Vascular Diseases 238

Developmental Abnormalities 240

Key Concepts 242

Suggested Readings 242

Chapter

Molecular Basis of Diseases of the Gastrointestinal Tract 243

Antonia R. Sepulveda, M.D., Ph.D., and

Dara L. Aisner, M.D., Ph.D.

Gastric Cancer 243

Colorectal Cancer 248

Key Concepts 260

Suggested Readings 261

Chapter

20 Molecular Basis of Liver Disease 263

Satdarshan P. Singh Monga, M.D., and Jaideep Behari, M.D., Ph.D.

Introduction 263

Molecular Basis of Liver Development 263

Molecular Basis of Liver Regeneration 265

Adult Liver Stem Cells in Liver Health and Disease 266

Molecular Basis of Hepatocyte Death 267

Molecular Basis of Nonalcoholic Fatty Liver Disease 268

Molecular Basis of Alcoholic Liver Disease 271

Molecular Basis of Hepatic Fibrosis and

Cirrhosis 272

Molecular Basis of Hepatic Tumors 274

Key Concepts 277

Suggested Readings 277

Chapter

21 Molecular Basis of Diseases of the Exocrine Pancreas 279

Matthias Sendler, Ph.D., Julia Mayerle, Ph.D., and Markus M. Lerch, M.D.

Acute Pancreatitis 279

Chronic and Hereditary Pancreatitis 284

Key Concepts 287

Suggested Readings 288

Chapter

22 Molecular Basis of Diseases of the Endocrine System 289

Alan Lap-Yin Pang, Ph.D., and Wai-Yee Chan, Ph.D.

Introduction 289

The Pituitary Gland 289

The Thyroid Gland 292

Familial Nonautoimmune Hyperthyroidism 295

The Parathyroid Gland 296

The Adrenal Gland 299

Puberty 302

Key Concepts 306

Suggested Readings 306

Chapter

23 Molecular Basis of Gynecologic Diseases 309

Samuel C. Mok, Ph.D., Kwong-kwok Wong, Ph.D., Karen Lu, M.D., Karl Munger, Ph.D., and Zoltan Nagymanyoki, M.D., Ph.D.

Introduction 309

Benign and Malignant Tumors of the Female

Reproductive Tract 309

Disorders Related to Pregnancy 319

Key Concepts 321

Suggested Readings 322

Chapter

24 Molecular Pathogenesis of Diseases of the Kidney 323

Amy K. Mottl, M.D., M.P.H., and Carla Nester, M.D., M.S.A.

Introduction 323

Normal Kidney Function 323

Focal Segmental Glomerulosclerosis 323

Fabry Disease 325

Polycystic Kidney Disease 327

Disorders of Renal Tubular Function 330

Key Concepts 332

Suggested Readings 332

Chapter

25 Molecular Pathogenesis of Prostate Cancer: Somatic, Epigenetic, and Genetic

Alterations 335

Carlise R. Bethel, Ph.D., Angelo M. De Marzo, M.D., Ph.D., and William G. Nelson, M.D., Ph.D.

Introduction 335

 $\begin{array}{ll} Here ditary \ Component \ of \ Prostate \ Cancer \ Risk & 336 \\ Somatic \ Alterations \ in \ Gene \ Expression & 336 \\ \end{array}$

Epigenetics 338

Conclusion 339

Acknowledgments 339

Key Concepts 340

Suggested Readings 340

Chapter

26 Molecular Biology of Breast Cancer 341

Natasa Snoj, M.D., Phuong Dinh, M.D., Philippe Bedard, M.D., and Christos Sotiriou, M.D., Ph.D.

Introduction 341

Traditional Breast Cancer Classification 341

Biomarkers 343

Gene Expression Profiling 346

Conclusion 348

Key Concepts 348

Suggested Readings 348

Chapter

27 Molecular Basis of Skin Disease 351

Vesarat Wessagowit, M.D., Ph.D.

Molecular Basis of Healthy Skin 351

Skin Development and Maintenance Provide New

Insight into Molecular Mechanisms of

Disease 352

Molecular Pathology of Mendelian Genetic Skin

Disorders 354

Molecular Pathology of Common Inflammatory Skin

Diseases 359

Skin Proteins as Targets for Inherited and Acquired

Disorders 361

Molecular Pathology of Skin Cancer 364

Molecular Diagnosis of Skin Disease 368

New Molecular Mechanisms and Novel

Therapies 370

Key Concepts 372

Suggested Readings 372

Chapter

28 Molecular Pathology: Neuropathology 373

Joshua A. Sonnen, Ph.D., C. Dirk Keene, M.D., Ph.D., Robert F. Hevner, Ph.D., M.D., and Thomas J. Montine, M.D., Ph.D.

Anatomy of the Central Nervous System 373

Neurodevelopmental Disorders 376

Neurological Injury: Stroke, Neurodegeneration,

and Toxicants 380

Neoplasia 390

Disorders of Myelin 394

Key Concepts 397

Suggested Readings 397

PART

V

Practice of Molecular Medicine

Chapter

29 Molecular Diagnosis of Human Disease 401

Lawrence M. Silverman, Ph.D., and Grant C. Bullock, M.D., Ph.D.

Introduction 401

History of Molecular Diagnostics 401

Molecular Laboratory Subspecialties 403 Key Concepts 411 Suggested Readings 411

Chapter

30 Molecular Assessment of Human Disease in the Clinical Laboratory 413

Suggested Readings 420

Joel A. Lefferts, and Gregory J. Tsongalis, Ph.D.

Introduction 413
The Current Molecular Infectious Disease Paradigm 414
A New Paradigm for Molecular Diagnostic
Applications 415
BCR-ABL: A Model for the New Paradigm 418
Conclusion 420
Key Concepts 420

Chapter

31 Pharmacogenomics and Personalized Medicine in the Treatment of Human Diseases 421

Hong Kee Lee, Ph.D., and Gregory J. Tsongalis, Ph.D.

Introduction 421 Conclusion 428 Key Concepts 428 Suggested Readings 428

Index 429

Essential
Pathology —
Mechanisms of
Disease