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Preface

The fifth volume of Advances in Control Systems continues in the purpose
of this serial publication to bring together diverse information on important
progress in the field of control and systems theory and applications, as
achieved and discussed by leading contributors.

The problem of the optimal control of a system for which accurate
knowledge of its dynamic characteristics exists has receited a great deal of
attention over the past few years. An aspect of the conffol problem which
has received far less attention is that of optimizing system performance in
the absence of any a priori knowledge of the system or plant dynamic
characteristics. If the dynamics of the system are snknown and vary fram
time to time in an unpredictable manner, it is evident that some type of
identification scheme must be incorporated into the system operation in
order to.achieve and maintain optimal performance in any meaningful sense.
The techniques which have been proposed to cope with this problem, often
‘referred to as an adaptive or adaptive optimal control problem, usually
require some a priori information of the plant dynamigc characteristies (e.g.,
the order and form of the differential equations may be known though
some of the coefficients may be unknown). Such techniques are useful when
the order and form of the system’s differential equations are known. On the
other hand, there exist many practical situations in which the dynamic
characteristics of the system are too complex to permit a representation in
any reasonably simple form. A method for optimizing in some sense the
system performance which does not require the complete identification
of the system dynamics and which does not presume a knowledge of the
-order or form of the system differential equations is clearly desirable in
such cases. The first contribution in this volume by A. E. Pearson deals
with this problem.and presents some rather basic techniques for it, many
of which are original with Pearson.

- Fundamental necessary and sufficient condmons in the calculus of
variations, basic to the optimal control problem, have been under mve?rtlga-
tion by mathematicians for many decades, in fact, for hundreds of years.
Algorithms for the solution of the optimization. problem have beén under
investigation for many years, but it is only in the last five or ten years that
this extremely important area has received intensive effort. There :are
several fundamental approaches to algorithms for the solution of the
optimization problem or what we may also refer to as the trajectory opti-
mization or reference control input problem, and several of these have been
treated in earlier volumes of this series. The contribution by D. K. Séhlar-

mack presents one of the most important éfforts to date on the initial vilue
vii
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iteration algorithmic approach to the sqlut'io,g of the optimization
A further notable feature of this contribution is the applicatic
approach to several substantive illustrative problems.

.One of the basic problems in control and systems theory in gen:
determination of the set of states that can be reached at time T gi
scribed class of admissible control functions and an initial state at ¢
initial time for a nonlinear system. This problem is treate
contribution by D. R. Snow, and it is referred to there as the p
determmihg the T-reachable region. A related problem, 4lso t
Snow,:is the determination of the T-controllable reglonﬁescnl
In developing the results presented in this contribution Snow has
manhy. of the classical results of the calculus of variations and I
Jacobi theory to optimal control problems thirough thdiise of Carat
unifying approach. Although some of these extensions have been
in the literature during the- past three or four years, they are
here in a unified form for the first time.

The contribution by J. R. Fisher presents a number of rath
mental res_lts in optimal nonlinear filtering. The differential
of a-system which, when driven by a noise-corrupted measureme
will generate either the conditional probability density or the c
characteristic‘function of the state vector of a nonlinear system cor
in time are derived: It is:shown that certain general classes of ide
problems are results of this theory. It is also shown that the opt
linear, non-Gaussian predlctmn problem is simply a two-stage a
of the theory developed in this contribution. A rather comm
survey of earlier work and contributions is presented here also.

= An important application area of control and systems the
opnmal control of nuclear reactors. The contribution by D. )
preserts = rather comprehensive treatment of some of the fu
techniques possible here. A-mathematical model of the system
trolled is developed. Methods of estimating the effects of spatia
on system stability are presented. Analytical design techniques
feedback control systems are presented. Questions of controll
distributed parameter systems are examined here also.

This volume closes with a contribution by J. McIntyre and B. P
on optimal control with bounds on the state variables. There
practical instances of where such problems occur. There have be
ous published results in the literature exploring various aspe
important problem. This contribution reviews many of these 1
presents an over-all view of the status of the techniques in this fi

Fuly, 1967 ) | C.T.
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I. Introduction

Optimization problems in the theory of control systems have received
considerable attention in recent years. The mathematical techniques which
have been applied to optimal control problems depend upon an accurate
knowledge of the plant dynamic characteristics. Given the differential
equations of the plant to be controlled, a performance functional to be
minimized over a certain set of control functions, and various constraints
pertinent to the problem at hand, the mathematical techniques facilitate
the determination of the necessary conditions for optimal system
performance (1-3).

An aspect of the control problem which has recelved far less attention is
that of optimizing the system performance in the absence of any a priori
knowledge of the plant dynamic characteristics. If the plant dynamics are
unknown and vary from time to time in an unpredictable manner, it is

1



2 ALLAN E. PEARSON

evident that some type of identification scheme must-be incorporated into -
the system operation in order to achieve and maintain optimal performance

- in any meaningful sense. The techniques which have been proposed to cope
with this problem, often referred to as an adaptive or adaptive-optimal
control problem, usually require some a priori information of the plant
dynamic characteristics; e.g., the order and form of the differential equations
may be known though some of the coefficients may be unknown [see (4) for
a review of adaptive control techniques]. Such techniques are useful when
the order and form of the plant differential equations are known. On the
other hand, there exist many practical situations in which the plant dynamic
characteristics are too complex to permit a representation in any reasonably
simple form. A method for optimizing (in some sense) the system per-
formance which does not require the complete identification of the plant
dynamics and which does not presume a knowledge of the order or form
of the plant differential equations is clearly desirable in such cases.

An adaptive optimal control scheme which does not rely upon a priors
knowledge of the order or form of the plant differential equations is the
Draper and Li extremum or peak holding controller (5,"6). This approach
depends upon the existence of a plant output variable, or collection of
variables, possessing an unknown maximum (or minimum) which may be
slowly varying in time. The performance criterion in this case is to maintain
the plant output as close to the extremum value as possible. The peak
holding controller applies a slowly changmg input signal (slow compared
to the longest time constant of the plant) in a fixed direction until it is_
observed that: the pertinent plant output variable has passed through its
extremal value, whereupon the controller switches the direction of the
input signal to force the plant variable back through its extremum. Assuming
that the transient properties of the plant (the plant dynamic characteristics
aside from the unknown extremal value) remain reasonably fixed in time,

: the peak holdmg controller continually adapts its operatxon to follow the
slowly varying extremum of the output variable.

In 1961, Kulikowski (7) introduced another approach to the particular
adaptive optimal control problem considered by Draper and Li. In order
to remove the assumption that the transient properties of the plant remain
- essentially fixed, Kulikowski proposed alternating periods of identification

with periods of optimization in determining the form of the input signal.
This is in contrast with the peak holding controller in which the saw-
toothed nature of the input signal is specified in advance. Kulikowski
‘introduced a greater degree of mathematical formalism into the problem by
focusing attention. upon minimizing the performance functional

P(u)=Af:u2(t)dt—f:y(t}dt Y
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where y(2) is the output variable which possesses an unknown maximum
value and u(£) is the input to the plant. (The notation z is used to indicate
the time function segment z = {(t, 2(2))|0 < ¢ < T}.) The motivation for
specifying the functional (1) stems from the desire to maximize the entire
transient behavior of the plant over a fixed interval (0, T') and, at the same
time, to minimize the cost for control,

[Luxtyae
as weighted by the constant A > 0.

In brief, Kulikowski’s approach involves carrying out a certain type of
identification at each step in the construction of a sequence of input func-
tions {u,}, n=1,2,..., which under appropriate conditions will converge
to an optimum mput functlon u* satisfying P(u*) < P(u). The relation-
ship between the plant input and output functions is denoted symbolically
by an operator 4, y(f) = A(u), 0 < ¢ < T, which maps elements u from a
space of input functions % into elements y belongmg to a space of response
functions %. The amount and type of identification which is to be per-
formed with respect to each element w, is based upon the information
needed to compute u,,; in an iterative minimization of (1). Kulikowski
showed that the identification at each step involves the measurement of
output elements 4(u,, + ev) correspondmg to various known input elements
of the form w,, + ev where € is a small parameter.

Although the assumption was made in (7) that the plant operator 4
possess certain symmetry properties which are rarely upheld in practice,
this assumption was removed in subsequent work (8-10). One of the most
important results of Kulikowski’s original paper concerns the identification
requirement that output €lements y = A(u, + ev) be measured as time
function segments rather than requiring explicit or detailed knowledge of
the operator 4. Thus, in practice, the dynamic characteristics of the plant
may be very complex since there is no need to assume linearity or any
specific form of plant differential equations. The only assumptions needed
concerning the plant dynamics are that they vary slowly in time relative to
the time spent in constructing the sequence {u,} and that the plant operator
A possess a sufficient degree of smoothness to guarantee the existence of
the gradient of the functional P(u).

In subsequent papers (8-10) Kulikowski expanded the above approach
and paved the way for further investigation (11-14). Pearson and Sarachik
(15) later showed that the memory of the plant influenced the mathematical
formulation of Kulikowski’s approach. It was shown that this influence
could be taken into account by requiring that the plant be in the proper
steady state operation before measuring output elements A(u, + v) during
the identification procedure. A somewhat different approach to basically
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the same class of adaptive optimal control problems has been reported by
Zaborszky and Humphrey (16). ‘

This chapter extends the work which has been reported on Kulikowski’s
approach to adaptive ogtlmal control problems. The formulation has been
modified to mclude optimizing the total amount of input accumulation,

f " u(t)dt

in addition to optimizing the form of the periodic input signal, in the case
of plants possessing infinite memory, i.e., plants possessing pure integrators
within their structure. The class of adaptive problems has been extended
to include the optimization of system performance when the desired
response of the system is a periodic function of time. The formulation of
the adaptive optimal control problem is presented in Section II in cog-
nizance of the practical considerations for identification, Section IV, and
the computational aspects of achieving optimum system operation,
Section III. Sections II-IV are concerned only with single input-single
output plants; however, the extension to the general case of multivariable
nonlinear plants is indicated in the final section.

1. Formulation

In general terms the problem of concern here is the optimization of the
steady state performance of a plant whose dynamlc characteristics are
unknown and slowly varying with time. No precise meaning will be attached
to the phrase “slowly varying with time”’ although it will be clear that the
plant dynamic characteristics must remain essentially fixed during the time
required to carry out the identification and computations for the adaptive
optlmnzmg procedure. Emphasis will be placed upon determmmg a periodic
input signal such that the plant output is forced into a steady state periodic
signal and the resulting over-all system performance is optimum. The
meaning of optimum steady state system performance is to be interpreted
as the minimization of a performance index which evaluates the system
performance over one period of steady state operation.

A. Statement of t‘he Problem

It is assumed that there is a performance or cost functional of the general
form

P= [ G,y ya0)at )
period |
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which serves to evaluate the output behavior of the plant and to assess the
cost of operating the plant over one period of steady state operation. The
plant i input and output varigbles are denoted by () and y(t) respectively,
and y,(t) is a desired output. The function G(u,y,y,) is assumed to be
twice differentiable in each of its arguments.

The desired output of the plant, y,(2), is assumed to be either a constant
or a periodic function of time with period T,;. The object is to find a control
function u* = {[¢,u*(#)]|0 < ¢ < T} in a space of admissible control func-
tions %, where T is a submultiple of T, (Ty= «T, « = an integer), such
that a periodic input signal constructed from suitable repetitions of the
element u* forces the plant into its optimum steady state operation. The
choice of the integer « and the value of T = 1/« T, depends upon the energy
storage properties of the plant as will be discussed in Part B of this section.
In addition to finding the best control element u* € % to be used in forming
a periodic input signal, it is necessary to determine the optimum level of
input accumulation,

s* = J' :o u(-r)'d‘r,

which is present at the start of each period of steady state operation in the
case of plants possessing pure integrators within their structure.

The problem of optimizing the steady state performance of a plant with
unknown dynamic characteristics will be' approached utilizing a step-by-
step optimization and identification procedure. Mathematically, the
problem will be viewed in terms of constructing a sequence of elements
{u,}, n=1,2,..., in the case of finite memory plants, or a sequence of
ordered pairs {u,,s,} in the case of plants possessing infinite memory, such
that steady state optimal performance is achieved in the limit as n.— .
The space of functions % from which the elements u, are drawn in forming
a periodic input signal is assumed to be an unbounded space of square
integrable functions defined on the interval (0, T'). Physically this assump-
tion means that there is sufficient fuel, energy, or power to accomplish the
control objectives. Amplitude constraints, such as would be caused by a
valve or saturating amplifier, can be included in this formulation if the
device responsible for the saturation can be approximated by a twice
differentiable function, e.g., # =tan™!ku’. The saturating device can be
included as part of the nonlinear plant operator with the 1nput to the device
a member of an unbounded space.

The identification of certain essential aspects of the plant dynamic
characteristics is to be carried out with respect to each element u,, or pair
(u,, 5,), in order to compute the succeeding element u,, 4, or pair (W, 1, Sp41),
in an iterative minimization of the functional (2). The dynamic character-
istics of the plant in steady state operation will be represented symbolically
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by an operator A which in the case of finite memory plants maps elements u
from the space % into corresponding output-elements y in‘a space of output
functions #. In the case of plants possessing infinite memory, the steady
state operator 4 maps ordered pairs of elements (u,s) from the product
space % x &R (where # denotes the set of real numbers) into a function
space ¥ of response time function segments y. Although it is not necessary
to assume any specific knowlege about the plant dynamic characteristics, it
is assumed that the plant possesses a finite settling time and that it can be
forced into a steady state operation. with respect to an arbitrary input
element u €  which comprises a suitable periodic input signal.

B. Evaluation of System Performance

The first question to be considered in formulating the adaptive optimal
steady state control problem is the manner in which an arbitrary input
element u € % should be used in forming a periodic input signal such that
the plant is forced into the proper steady state operation. This question is
equivalent to establishing a basis for evaluating the system performance in
steady state operation which guarantees that the periodic output of the
plant is due only to the input element u in question. It is cléar that a dis-
tinction must be made between plants which possess a finite memory,
~ referred to here as type-zero plants, and plants possessing pure integrators
within their structure which are capable of storing energy indefinitely. In
either case it is necessary to assume that the plant possesses a finite settling

_time and that the output of the plant can be forced into a periodic signal
of the same fundamental period as the input, for an arbitrary element u €
to be used in forming the periodic input signal.

1. TyPE-ZERO PLANTS

If the plant does not possess any pure integrators within its structure
which are capable of storing energy indefinitely, it is clear that simple
repetitions of an input element u over successive time intervals of length T
will eventually force the output into a periodic signal of the same funda-
mental period. After such steady state operation has been achieved, the
output y measured over one period in phase with the input can be con-
sidered as the image element under a map 4 of the input element u,

: y=A(u) 3)
‘where A is the steady state plant operator (see Fig. 1). The steady state
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performance of the system is approprlately evaluated with respect to an
arbitrary input element u € # via the functional

P(u) = [, G(u,y,ya)at 4
where T is chosen such that
T=T,

and y = A(u) is measured after steady state operation has been achieved.

INPUT
u u u u
L ]
W
I [}
: ! ! !
o Ta 2T, 3T, aT,
Fic. 1. Procedure for establishing
stleady state operation of type-zero OUTPUT
i ! |
i ' !
| ! 1
o Ty 27, 3T, aT,

If the desired output y, is a constant (T; = =), it will be assumed that T'
is chosen independently of the optimization procedure. It is natural in this
case that T should be chosen larger than the anticipated plant settling time
if the latter is known.

There are other ways of constructing a periodic input signal from an
arbitrary element u which would suffice to ensure that the ensuing periodic
output of a type-zero plant depends only on the element u. Consider, for
example, choosing the length T of the time function segment u according to

T=13T, ©)
and formmg a periodic input signal of penod T, such that the sequence

u for. 0<t< §T, ]
u(t) = (6)
0 for }T;<t<T

is repeated over each period (see Fig. 2). The resulting steady state o itput
can be represented by the two time function segments y, and y,, each of
length T, such that the steady state plant operator is characterized by the
two operators A, and Az as defined by .

AW, y=4m ()



