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Preface

PKC 2003 was the Sixth International Workshop on Practice and Theory in
Public Key Cryptography and was sponsored by IACR, the International Asso-
ciation for Cryptologic Research (www.iacr.org). This year the workshop was
organized in cooperation with the Department of Computer Science, Florida
State University. The General Chair, Mike Burmester was responsible for local
organization, registration, etc.

There were 105 submitted papers which were considered by the Program
Committee. This is an increase of 52% compared to PKC 2002, which took
place in Paris, France, February 2002, and which was incorrectly identified on
the cover of the proceedings as being the fourth workshop. Due to the large
number of submissions, some papers that contained new ideas had to be rejected.
Priority was given to novel papers. Of the 105 submissions, 26 were selected for
the proceedings. These contain the revised versions of the accepted papers. Each
paper was sent to at least 3 members of the program committee for comments.
Revisions were not checked for correctness of their scientific aspects and the
authors bear full responsibility for the contents of their papers. Some authors
will write final versions of their papers for publication in refereed journals.

I am very grateful to the members of the Program Committee for their hard
work in the difficult task of selecting roughly 1 out of 4 of the submitted papers.
Submissions to PKC 2003 were required to be anonymous. A Program Commit-
tee member could only present one accepted paper, or co-author at most two
accepted papers without being allowed to present these. Papers submitted by
members of the Program Committee were sent to at least 4 referees (and, of
course, no Program Committee member reviewed his or her own paper).

The following external referees helped the Program Committee in reach-
ing its decisions: Mehdi-Laurent Akkar, Joonsang Baek, Endre Bangerter, Régis
Bevan, Daniel Bleichenbacher, Emmanuel Bresson, Eric Brier, Jan Camenisch,
Matthew Campagna, Dario Catalano, Benoit Chevallier-Mames, Koji Chida,
Nicolas Courtois, Annalisa De Bonis, Yevgeniy Dodis, Thomas Diibendorfer,
Jacques Fournier, Atsushi Fujioka, Jun Furukawa, Clemente Galdi, Rosario Gen-
naro, Christophe Giraud, Louis Granboulan, Louis Goubin, Stuart Haber, Tho-
mas Holenstein, Nick Howgrave-Graham, Stanislaw Jarecki, Antoine Joux, Jona-
than Katz, Wataru Kishimoto, Erik Woodward Knudsen, Takeshi Koshiba, Hugo
Krawczyk, Ben Lynn, Anna Lysyanskaya, Kazuto Matsuo, Patrick McDaniel,
Phong Nguyen, Jesper Buus Nielsen, Satoshi Obana, Benny Pinkas, David Point-
cheval, Bartosz Przydatek, Hervé Sibert, Francesco Sica, Nigel Smart, Markus
Stadler, Martijn Stam, Reto Strobl, Koutarou Suzuki, Mike Szydlo, Tsuyoshi
Takagi, Katsuyuki Takashima, Eran Tromer, Christophe Tymen, Salil Vadhan,
Stefan Wolf, Jiirg Wullschleger, and Akihiro Yamamura. (I apologize for any
possible omission.) The Program Committee appreciates their efforts.
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Thanks to Hoang Ha, Haizhi Chen, and Wayman E. Luy for secretarial work
and for partially maintaining the WWW page of the conference, and to Wayne
Sprague for setting up the e-mail addresses for PKC. Several people helped the
General Chair with sending out the call for papers, registration, registration at
the conference, etc.

Finally, I would like to thank everyone who submitted to PKC 2003, and
TACR for its sponsorship.

October 2002 Yvo Desmedt
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Efficient Construction
of (Distributed) Verifiable Random Functions

Yevgeniy Dodis

Department of Computer Science
New York University, USA
dodis@cs.nyu.edu

Abstract. We give the first simple and efficient construction of verifiable
random functions (VRFs). VRFs, introduced by Micali et al. [13], combine
the properties of regular pseudorandom functions (PRFs) (i.e., indistin-
guishability from a random function) and digital signatures (i.e., one can
provide an unforgeable proof that the VRF value is correctly computed).
The efficiency of our VRF construction is only slightly worse than that of
a regular PRF construction of Naor and Reingold [16]. In contrast to our
direct construction, all previous VRF constructions [13, 12] involved an
expensive generic transformation from verifiable unpredictable functions
(VUFs).

We also provide the first construction of distributed VRFs. Our construc-
tion is more efficient than the only known construction of distributed
(non-verifiable) PRFs [17], but has more applications than the latter.
For example, it can be used to distributively implement the random
oracle model in a publicly verifiable manner, which by itself has many
applications.

Our construction is based on a new variant of decisional Diffie-Hellman
(DDH) assumption on certain groups where the regular DDH assumption
does not hold [10, 9]. Nevertheless, this variant of DDH seems to be
plausible based on our current understanding of these groups. We hope
that the demonstrated power of our assumption will serve as a motivation
for its closer study.

1 Introduction

As a motivating example for our discussion, consider the problem of implement-
ing the random oracle model [2]. Recall that in this model one assumes the
existence of a publicly verifiable random function O (over some suitable domain
and range). Each value O(z) is random and independent from the other values,
and evaluating O on the same input twice yields the same (random) output. This
model has found numerous applications in cryptography, which we do not even
attempt to enumerate. It was shown by Canetti et al. [5], though, that no fixed
public function can generically replace the random oracle, so more elaborate
solutions are needed.

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 1-17, 2003.
© Springer-Verlag Berlin Heidelberg 2003



2 Yevgeniy Dodis

PSEUDORANDOM FUNCTIONS. As the first attempt, we may assume the exis-
tence of a trusted (but computationally bounded) party T'. Since a function is an
exponential sized object, T' cannot store it explicitly. While maintaining a dy-
namically growing look-up table is a possibility, it is very inefficient as it requires
large storage and growing complexity. A slightly better option is to use a pseudo-
random function (PRF) Fsg(-) [8]. As indicated, this function is fully specified
and efficiently computable given its short secret key (or seed) SK. However,
without the knowledge of SK it looks computationally indistinguishable from
exponential-sized O.

In terms of constructing PRFs, there are several options. The most rele-
vant to this paper, however, is the number-theoretic construction due to Naor
and Reingold [16], which is based on the decisional Diffie-Hellman (DDH) as-
sumption. This assumption in some group G of prime order ¢ states that given
elements g, g% and g° of (where g is the generator of G), it is hard to distinguish
the value g from a truly random value g¢ (where a, b, ¢ are random in Zq). The
PRF of [16] is a tree-based construction similar to the PRF construction of (8]
from a pseudorandom generator. Namely, the secret key SK = (g, a4, ...a¢) con-
sists of a random generator g of G and ¢ random exponents in Z, (where £ is the
length of the input to our PRF Fsg : {0,1}* — G). Givenz = z; ...z, € {0,1}¢,
the PRF is defined by:

Fyaae(@i - ze) 2 g limimiy as mod (1)
VERIFIABLE RANDOM FUNCTIONS. Coming back to our motivating application,
replacing random oracle with a PRF has several problems. The first one is the
question of verifiability and transferability. Even if everybody trusts 7' (which
we will revisit soon), T" has to be contacted not only when the value of F has to
be computed for the first time, but even if one party needs to verify that another
party has used the correct value of F'. Thus, it would be much nicer if each value
of Fsk (z) would come with a proof msk (z) of correctness, so that the recipient
and everybody else can use this proof without the need to contact T' again. As
a side product, the ability to give such proof will also ensure that 7' himself
cannot “cheat” by giving inconsistent values of F', or denying a correctly com-
puted value of the function. This leads to the notion of verifiable (pseudo)random
functions, or VRFs [13]. Intuitively, such functions remain (pseudo)random when
restricted to all inputs whose function values were not previously revealed (and
proved). Notice, the pseudorandomness and verifiability of a VRF immediately
imply that a VRF by itself is an unforgeable signature scheme secure against
chosen message attack.

CONSTRUCTIONS OF VRFs. Unfortunately, VRFs are not very well studied yet.
Currently, we have two constructions of VRFs: based on RSA [13], and based on
a separation between computational and decisional Diffie-Hellman problems in
certain groups [12]. Both of these constructions roughly proceed as follows. First,
they construct a relatively simple and efficient verifiable unpredictable function
(VUF) based on the corresponding assumption. Roughly, a VUF is the same ver-
ifiable object as a VRF, except each “new” value Fsk(z) is only unpredictable
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(i.e., hard to compute) rather than pseudorandom. From VUFs, a generic con-
struction to VRFs is given, as introduced by [13]. Unfortunately, this construction
is very inefficient and also looses a very large factor in its exact security. Essen-
tially, first one uses the Goldreich-Levin theorem [7] to construct a VRF with
very small (slightly super-logarithmic) input size and output size 1 (and pretty
dramatic security loss too!).! Then one makes enough such computations to
amplify the output size to roughly match that of the input. Then one follows
another rather inefficient tree-based construction on the resulting VRF to get a
VRF with arbitrary input size and small output size. Finally, one evaluates the
resulting convoluted VRF several times to increase the output size to the de-
sired level. In some sense, the inefficiency of the above construction is expected
given its generality and the fact that it has to convert pure unpredictability into
a much stronger property of pseudorandomness. Still, this means that the re-
sulting VRF constructions are very bulky and inelegant. In this work we present
the first simple, efficient and “direct” VRF construction.

DiSTRIBUTED PRFS. Returning to our target application of implementing the
random oracle, the biggest problem of both PRF/VRF-based solutions is the
necessity to fully trust the honest party T holding the secret key for F'. Of course,
VREFs slightly reduced this trust level, but 7" still singlehandedly knows all the
values of F. Clearly, this approach (1) puts to much trust into T', (2) makes T
is bottleneck of all the computations; (3) makes T is “single point of failure”:
compromising 7" will break the security of any application which depends on the
random oracle assumption.

The natural solution to this problem is to distribute the role of T' among n
servers. This leads to the notion of distributed PRFs (DPRFs) and distributed
VRFs (DVRFs). Since the latter concept was not studied prior to our work, we
start with DPRFs, thus ignoring the issue of verifiability for now. Intuitively,
DPRFs with threshold 1 < ¢ < n allow any (¢ + 1) out of n servers to jointly
compute the function using their shares, while no coalition of up to t servers to
be in a better situation that any outside party. Namely, the function remains
pseudorandom to any such coalition.

DPREFs first originate in the work of Micali and Sidney [14]. However, their
construction (later improved by [15]) can tolerate only a moderate number of
servers or a small threshold, since its complexity is proportional to nt. The next
influential work is that of Naor et al. [15], who give several efficient constructions
of certain weak variants of DPRFs. Ironically, one of the constructions (namely,
that of distributed weak PRF) can be turned into an efficient DPRF by utilizing
random oracles. Even though this is non-trivial (since nobody should compute
the value of a DPRF without the cooperation of t+ 1 servers), we would certainly
prefer a solution in the plain model, since elimination of the random oracle was
one of the main motivation for DPRFs!

! The latter is the reason for such a small input size. One can make a very strong
exponential assumption to increase the input size, like was done in [12], but the
construction still loses a lot in security, and still goes through an intermediate VUF.
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The first regular DPRF was recently constructed by Nielsen [17] by distribut-
ing a slightly modified variant of the Naor-Reingold PRF [16], given in Equa-
tion (1) (in the final version of their work, [16] also give essentially the same
construction). Unfortunately, the resulting DPRF in highly interactive among
the servers (while ideally the servers would only talk to the user requesting the
function value) and requires a lot of rounds (proportional to the length of the in-
put). In particular, the question of non-interactive DPRF construction remained
open prior to this work.

DiSTRIBUTED VRFS. Even though DVRFs were not explicitly studied prior to
this work, they seem to provide the most satisfactory solution to our original
problem of implementing the random oracle. Indeed, distributing the secret key
ensures that no coalition of up to t servers can compromise the security (i.e.,
pseudorandomness) of the resulting random oracle. On the other hand, verifi-
ability ensures that one does not need to contact the servers again after the
random oracle was computed once: the proof can convince any other party of
the correctness of the VRF value. For example, DVRFs by themselves provide
an ordinary threshold signature scheme, which can be verified without further
involvement of the servers. And, of course, using DVRFs are likely to enhance
the security, robustness or functionality of many applications originally designed
for plain PRFs, VRFs and DPRFs.

OuRr CONTRIBUTIONS. We give the first simple and direct construction of VRFs;
based on a new “DDH-like” assumption which seems to be plausible on certain
recently proposed elliptic and hyper-elliptic groups (e.g., [10]). We call this as-
sumption sum-free decisional Diffie-Hellman (sf-DDH) assumption. While we
will discuss this assumption later, we mention that in the proposed groups the
regular regular DDH assumption is false (in fact, this is what gives us verifia-
bility!), and yet the sf-DDH or some similar assumption seems plausible. Our
construction is similar to the Naor-Reingold (NR) construction given by Equa-
tion (1), except we utilize some carefully chosen encoding C before applying the
NR-construction. Specifically, if C : {0,1}¢ — {0, 1}* is some injective encoding,
we consider the function of the form

Fyar, o (@1 ... 2¢) & glltncei=y s moda )

Identifying the properties of the encoding C and constructing C satisfying these
properties will be one of the main technical challenges we will have to face. At
the end we will achieve L = O(¢) (specifically, L = 2¢ to get a regular PRF, and
L = 34+2 to get a VRF), making our efficiency very close to the NR-construction.

Our second main contribution is the first construction of a distributed
VRF(DVRF). Namely, we show that our VRF construction can be made dis-
tributed and non-interactive (although multi-round). This is the first non-
interactive construction of a distributed PRF (let alone VRF), since the only
previous DPRF construction of [17, 16] is highly interactive among the servers. In
fact, our DVRF construction is more efficient than the above mention DPRF con-
struction, despite achieving the extra verifiability. We already mentioned the big
saving in communication complexity (roughly, from n2¢k to nlk, where k is the
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security parameter). Another important advantage, though, is that we dispense
with the need to perform somewhat expensive (concurrently composable) zero
knowledge proofs for the equality of discrete logs. This is because in our groups
the DDH problem is easy, so it can be locally checked by each party without
the need for the proof. In particular, even though we need to apply the en-
coding C to the message, while the construction of {17, 16] does not, the lack of
ZK-proofs makes our round complexity again slightly better. Finally, we remark
that the same distributed construction can be applied to distribute the VUF of
Lysyanskaya [12] (which results in a threshold “unique signature” scheme under
a different assumption than the one we propose).

2 Definitions

2.1 Verifiable Random Functions and Friends

Definition 1. A function family F.y(-) : {0,1}*®) — {0,1}™® is a family
of VRFs, if there exists a probabilistic polynomial time algorithm Gen and deter-
ministic algorithms Prove and Verify such that: Gen(1*) outputs a pair of keys
(PK,SK); Provegk(z) outputs a pair (Fsk(x), msk(x)), where sk (x) is the
proof of correctness; and Verifypp (z,y, ) verifies that y = Fsk(x) using the
proof w. We require:

1. Uniqueness: no values (PK, x,y1, Y2, 1, T2) can satisfy Verify p (z,y1,71) =
Verify p (2, y2, m2) when y1 # ya.

2. Provability: if (y, ) = Provesk (), then Verifypg(z,y,7) = 1.

3. Pseudorandomness: for any PPT A = (A1, A1) who did not call its ora-
cle on z (see below), the following probability is at most § + negl(k) (here
and everywhere, negl() stands for some negligible function in the security
parameter k):

(PK,SK)«—Gen(1%); (z,st) « ATrove(')(PK); yo = Fsk(z); ]

Pr| b=¥
[ y1 — {0,1}m®; b {0,1}; b — AT O (y,, st)

Intuitively, the definition states that no “new” value of the function can be
distinguished from a random string, even after seeing any other function values
together with the corresponding proofs. Regular PRFs form the non-verifiable
analogs of VRFs. Namely, PK = 0, msx(-) = 0, there is no algortihm Verify,
no uniqueness and provability properties, and pseudorandomness is the only
remaining property. We notice that the resulting definition is not the typical
definition for PRFs [8]: namely, that no adversary can tell having oracle access to
a truly random function from having oracle access to a pseudorandom function.
However, it is easy to see that our definition is equivalent to that usual one, so
will we use it as the more convenient in the context of VRFs.
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2.2 Diffie-Hellman Assumptions

Assume Setup(1*) outputs the description of some cyclic group G of prime order q
together with its random generator g. Let L = L(k) be some integer and ay ...ar
be random elements of Z,. Let [L] denote {1...L}, and given a subset I C [L],
we denote ar = [[;c; a; mod g (where ag = 1), G(I) = G; = g*'. Finally, we
will often view an element z € {0,1}% as either a subset {i | z; = 1}, or an L-
dimensional vector over GF(2) (and vice versa).

GENERALIZED DIFFIE-HELLMAN ASSUMPTIONS. The security of ours, as well
as the previous related constructions [16, 12], will rely on various assumptions
of the following common flavor. The adversary A has oracle access to G(-), and
tries to “obtain information” about some value G(J). The meaning of obtaining
information depends on whether we are making a computational or a decisional
assumption. In the former case, A has to compute G(J), while in the latter
case A has to distinguish G(J) from a random element of G. While the decisional
assumption is stronger, it has a potential of yielding a (verifiable) pseudorandom
function, while the computational assumption can yield at best? a (verifiable)
unpredictable function.

In either case, we require that it should be hard to any polynomial time ad-
versary to succeed. Of course, one has to make some non-trivial restrictions on
when the adversary is considered suceessful. Formally, given that the adversary
called its oracle on subsets Ip,...,I; and “obtained information” about G(J),
we can define a predicate R(J, I, ... I;) which indicates whether the adversary’s
actions are “legal”. For example, at the very least the predicate should be false
if J € {I...I;}. We call any such predicate non-trivial. We will certainly re-
strict ourselves to non-trivial predicates, but may sometimes place some more
restrictions on R in order to make a more plausible and weaker assumption (see
below).

Definition 2. Given L = L(k), we say that the group G satisfies the generalized
decisional Diffie-Hellman (gDDH ) assumption of order L relative to a non-trivial
predicate R, if for any PPT adversary A = (A1, A1) who called its oracle on
subsets I ... I satisfying R(J, I1,...,I;) = 1, the probability below is at most
5 + negl(k):

/| (Ga,9) = Setup(1¥); (a1...az) — Zy, (J;st) — ATV(G, q); ]
yo=G(J); y1 — G; b—{0,1}; t/ « Ag(')(yb,st)

Very similarly one can define the generalized computational Diffie-Hellman
(gCDH) assumption of order L relative to R, where the job of A is to com-
pute G(J). We notice that the more restrictions R places on the I;’s and the
“target” set J, the harder it is for the adversary to succeed, so the assumption
becomes weaker (and more preferable). Thus, the strongest possible assumption
of the above type is to put no further restrictions on R other than non-triviality
(i.e., J € {I1,...1;}). We call the two resulting assumptions simply gDDH and
gCDH (without specifying R). A slightly weaker assumption results when we

Pr{b:b

2 .. . . .
Unless a generic inefficient conversion is used, or one assumes random oracles.
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require that the target set is equal to the full set J = [L], i.e. the adversary
has to obtain information about g2 -%. We call the resulting assumptions full
target gDDH/gCDH (where L = 2 yields regular DDH/CDH). Finally, making L
larger generally makes the assumption stronger, since the adversary can always
choose to concentrate on some subset of L. Thus, it is preferable to base the
security of some contsruction on as small L and as restrictive R as possible.

Before moving to our new sum-free gDDH assumption, let us briefly state
some simple facts about gDDH/gCDH. It was already observed by [19] that
gDDH assumption of any polynomial order L(k) (with or without full target)
follows from the regular DDH assumption (which corresponds to L = 2). Unfor-
tunately, we do not know of the same result for the gCDH problem. The best
analog of this result was implicitly obtained by [12], who more or less showed
that the regular gCDH assumption of logarithmic order O(log k) (even with full
target) implies the gCDH assumption of any polynomial order L(k), provided in
the latter we restrict the adversary to operate on the codewords of any good
error-correcting code.

SuM-FREE gDDH. We already saw that the regular DDH assumption is a very
strong security assumption in that it implies the gDDH assumption. This useful
fact almost immediately implies, for example, that the Naor-Reingold construc-
tion in Equation (1) is a PRF under DDH, illustrating the power of DDH for
proving pseudorandomness. Unfortunately, groups were DDH is true are not
convenient for making verifiable random functions, since nobody can verify the
equality of discrete logs. On the other hand, we will see shortly that it is very
easy to obtain verifiability in groups where DDH is solvable in polynomial time
(such as the group suggested by [10]). Unfortunately, such groups certainly do
not satisfy the gDDH assumption too, which seems to imply that we have to
settle for the computational assumption (like gCDH) in such groups, which in
turn implies that we settle only for the VUF construction rather than the de-
sired VRF. Indeed, obtaining such a VUF is exactly what was recently done by
Lysyanskaya [12] in groups where DDH is easy but gCDH is hard.

However, we make the crucial observation that the easiness of regular DDH
does not mean that no version of gDDH assumption can be true: it only means
we might have to put more restrictions on the predicate R in order to make it
hard for the adversary to break the gDDH assumption relative to R. Indeed, for
the current elliptic groups for which we believe in a separation between DDH and
CDH, we only know how to test if (h,u,v,w) is of the form u = h% v = h®,w =
ha® (this is called a DDH-tuple). This is done by means of a certain bilinear
mapping (details are not important), for which we do not know a multi-linear
variant. In fact, Boneh and Silverberg [4] observe that a multi-linear variant of
such mapping seems unlikely to exist in the currently proposed groups, and pose
as a major open problem to exhibit groups where such mappings exist. This
suggests that many natural, but more restrictive flavors of DDH seem to hold
in the currently proposed groups (where regular DDH is easy). For example,
as was mentioned by Boneh and Franklin [3], it seems reasonable to assume
that it is hard to distinguidh a tuple (h,h®, h®, h¢, h?*¢) from a random tuple
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(h,h®, h®, ke, h?). Put differently, when a; . ..ay, are chosen at random and given
a sample g = G(0),G(L1)...G(I;), the only way we know how to distinguish
G(J) from a random element of such groups is by exhibiting three sets I, Ip, Is
(where 0 < m,p,s < t, and Ip denotes the empty set) such that a; - as,, =
ar, - ay, mod q.2 The last equation implies that “J + I, = I, + I,”, where we
view the sets as L-bit 0/1-vectors, and the addition is bitwise over the integers.
In other words, one has to explicitly find a DDH-tuple among the samples G(I;)’s
and the target G(J).

We formalize this intuition into the following predicate R(J, I, ..., I;). Let
us denote Iy = (). We say that J is DDH-dependent on I ... I, if there are indices
0 < m,p,s < tsatisfying J+ I, = I, + I (see explanation above). For example,
10101 is DDH-dependent on 01010,00001 and 11111, since 10101 + 01011 =
11111 + 00001 = 11112. Then we define the DDH-free relation R to be true if
and only if J is DDH-independent from I; ... ;.

Definition 3. Given L = L(k), we say that the group G (where regular DDH is
easy) satisfies the sum-free decisional Diffie-Hellman (sf-DDH) assumption of
order L if it satisfies the gDDH assumption of order L relative to the DDH-free
relation R above.

For our purposes we notice that DDH-dependence also implies that J & I,,, =
I, ® I, where @ indicates the bitwise addition moduo 2 (i.e., we make “2 = 0”),
or J& I, ®I,®I, =0. Let us call J 4-wise independent from I ... I; if no three
sets I, Ip, Is yield J @ I, ® I, ® I, = 0. Hence, if we let R'(J, I1,...,I;) =1
if and only if J is 4-wise independent from the I;’s, we get that R’ is a stricter
relation than our DDH-free R. But this means that gDDH assumption relative
to R’ is a weaker assumption than sf-DDH, so we call it weak sf-DDH. Our actual
construction will in fact be based on weak sf-DDH.

To summarize, sf-DDH is the strongest assumption possible in groups were
regular DDH is false. We chose this assumption to get the simplest and most
efficient VRF construction possible when DDH is false. However, even if the
ambitious sf-DDH assumption we propose turns out to be false in the current
groups where DDH is easy — which we currently have no indication of — it
seems plausible that some reasonable weaker gDDH assumptions (relative to
more restrictive R) might still hold. And our approach seems to be general
enough to allow some easy modification to our construction (at slight efficiency
loss) meet many such weaker gDDH assumptions.

3 Constructions

Assume G is the group where DDH is easy while some version of sf-DDH holds.
We consider the natural the type of functions given by Equation (2); in our new

3 One can also try to find the additive relations, but since the a;’s are all random,
it seems that the only such relations one can find would trivially follow from some
multiplicative relations.



