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Preface

Three series of lectures were given at the 31st Probability Summer School in
Saint-Flour (July 8-25, 2001), by the Professors Catoni, Tavaré and Zeitouni.
In order to keep the size of the volume not too large, we have decided to
split the publication of these courses into two parts. This volume contains
the courses of Professors Tavaré and Zeitouni. The course of Professor Catoni
entitled “Statistical Learning Theory and Stochastic Optimization” will be
published in the Lecture Notes in Statistics. We thank all the authors warmly
for their important contribution.

55 participants have attended this school. 22 of them have given a short
lecture. The lists of participants and of short lectures are enclosed at the end

of the volume.

Finally, we give the numbers of volumes of Springer Lecture Notes where
previous schools were published.

Lecture Notes in Mathematics

1971: vol 307 1973: vol 390 1974: vol 480 1975: vol 539
1976: vol 598 1977: vol 678 1978: vol 774 1979: vol 876
1980: vol 929 1981: vol 976 1982: vol 1097 1983: vol 1117
1984: vol 1180 1985/86/87: vol 1362 1988: vol 1427 1989: vol 1464
1990: vol 1527 1991: vol 1541 1992: vol 1581 1993: vol 1608
1994: vol 1648 1995: vol 1690 1996: vol 1665 1997: vol 1717
1998: vol 1738 1999: vol 1781 2000: vol 1816

Lecture Notes in Statistics

1986: vol 50 2003: vol 179
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6 Simon Tavaré

1 Introduction

One of the most important challenges facing modern biology is how to make
sense of genetic variation. Understanding how genotypic variation translates
into phenotypic variation, and how it is structured in populations, is funda-
mental to our understanding of evolution. Understanding the genetic basis
of variation in phenotypes such as disease susceptibility is of great impor-
tance to human geneticists. Technological advances in molecular biology are
making it possible to survey variation in natural populations on an enormous
scale. The most dramatic examples to date are provided by Perlegen Sciences
Inc., who resequenced 20 copies of chromosome 21 (Patil et al., 2001) and by
Genaissance Pharmaceuticals Inc., who studied haplotype variation and link-
age disequilibrium across 313 human genes (Stephens et al., 2001). These are
but two of the large number of variation surveys now underway in a number
of organisms. The amount of data these studies will generate is staggering,
and the development of methods for their analysis and interpretation has be-
come central. In these notes I describe the basics of coalescent theory, a useful
quantitative tool in this endeavor.

1.1 Genealogical processes

These Saint Flour lectures concern genealogical processes, the stochastic mod-
els that describe the ancestral relationships among samples of individuals.
These individuals might be species, humans or cells — similar methods serve
to analyze and understand data on very disparate time scales. The main theme
is an account of methods of statistical inference for such processes, based pri-
marily on stochastic computation methods. The notes do not claim to be
even-handed or comprehensive; rather, they provide a personal view of some
of the theoretical and computational methods that have arisen over the last
20 years. A comprehensive treatment is impossible in a field that is evolving
as fast as this one. Nonetheless I think the notes serve as a useful starting
point for accessing the extensive literature.

Understanding molecular variation data

The first lecture in the Saint Flour Summer School series reviewed some basic
molecular biology and outlined some of the problems faced by computational
molecular biologists. This served to place the problems discussed in the re-
maining lectures into a broader perspective. I have found the books of Hartl
and Jones (2001) and Brown (1999) particularly useful.

It is convenient to classify evolutionary problems according to the time
scale involved. On long time scales, think about trying to reconstruct the
molecular phylogeny of a collection of species using DNA sequence data taken
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from a homologous region in each species. Not only is the phylogeny, or branch-
ing order, of the species of interest but so too might be estimation of the di-
vergence time between pairs of species, of aspects of the mutation process that
gave rise to the observed differences in the sequences, and questions about the
nature of the common ancestor of the species. A typical population genetics
problem involves the use of patterns of variation observed in a sample of hu-
mans to locate disease susceptibility genes. In this example, the time scale
is of the order of thousands of years. Another example comes from cancer
genetics. In trying to understand the evolution of tumors we might extract a
sample of cells, type them for microsatellite variation at a number of loci and
then use the observed variability to infer the time since a checkpoint in the
tumor’s history. The time scale in this example is measured in years.

The common feature that links these examples is the dependence in the
data generated by common ancestral history. Understanding the way in which
ancestry produces dependence in the sample is the key principle of these notes.
Typically the ancestry is never known over the whole time scale involved. To
make any progress, the ancestry has to be modelled as a stochastic process.
Such processes are the subject of these notes.

Backwards or Forwards?

The theory of population genetics developed in the early years of the last
century focused on a prospective treatment of genetic variation (see Provine
(2001) for example). Given a stochastic or deterministic model for the evolu-
tion of gene frequencies that allows for the effects of mutation, random drift,
selection, recombination, population subdivision and so on, one can ask ques-
tions like ‘How long does a new mutant survive in the population?’, or ‘What
is the chance that an allele becomes fixed in the population?’. These questions
involve the analysis of the future behavior of a system given initial data. Most
of this theory is much easier to think about if the focus is retrospective. Rather
than ask where the population will go, ask where it has been. This changes
the focus to the study of ancestral processes of various sorts. While it might
be a truism that genetics is all about ancestral history, this fact has not per-
vaded the population genetics literature until relatively recently. We shall see
that this approach makes most of the underlying methodology easier to derive
— essentially all classical prospective results can be derived more simply by
this dual approach — and in addition provides methods for analyzing modern
genetic data.

1.2 Organization of the notes

The notes begin with forwards and backwards descriptions of the Wright-
Fisher model of gene frequency fluctuation in Section 2. The ancestral pro-
cess that records the number of distinct ancestors of a sample back in time is
described, and a number of its basic properties derived. Section 3 introduces
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the effects of mutation in the history of a sample, introduces the genealogical
approach to simulating samples of genes. The main result is a derivation of the
Ewens sampling formula and a discussion of its statistical implications. Sec-
tion 4 introduces Kingman’s coalescent process, and discusses the robustness
of this process for different models of reproduction.

Methods more suited to the analysis of DNA sequence data begin in
Section 5 with a theoretical discussion of the infinitely-many-sites mutation
model. Methods for finding probabilities of the underlying reduced genealog-
ical trees are given. Section 6 describes a computational approach based on
importance sampling that can be used for maximum likelihood estimation of
population parameters such as mutation rates. Section 7 introduces a number
of problems concerning inference about properties of coalescent trees condi-
tional on observed data. The motivating example concerns inference about
the time to the most recent common ancestor of a sample. Section 8 develops
some theoretical and computational methods for studying the ages of muta-
tions. Section 9 discusses Markov chain Monte Carlo approaches for Bayesian
inference based on sequence data. Section 10 introduces Hudson’s coalescent
process that models the effects of recombination. This section includes a dis-
cussion of ancestral recombination graphs and their use in understanding link-
age disequilibrium and haplotype sharing.

Section 11 discusses some alternative approaches to inference using approx-
imate Bayesian computation. The examples include two at opposite ends of the
evolutionary time scale: inference about the divergence time of primates and
inference about the age of a tumor. This section includes a brief introduction
to computational methods of inference for samples from a branching process.
Section 12 concludes the notes with pointers to some topics discussed in the
Saint Flour lectures, but not included in the printed version. This includes
models with selection, and the connection between the stochastic structure of
certain decomposable combinatorial models and the Ewens sampling formula.

1.3 Acknowledgements

Paul Marjoram, John Molitor, Duncan Thomas, Vincent Plagnol, Darryl Shi-
bata and Oliver Will were involved with aspects of the unpublished research
described in Section 11. I thank Lada Markovtsova for permission to use some
of the figures from her thesis (Markovtsova (2000)) in Section 9. I thank Mag-
nus Nordborg for numerous discussions about the mysteries of recombination.
Above all I thank Warren Ewens and Bob Griffiths, collaborators for over 20
years. Their influence on the statistical development of population genetics
has been immense; it is clearly visible in these notes.

Finally I thank Jean Picard for the invitation to speak at the summer
school, and the Saint-Flour participants for their comments on the earlier
version of the notes.
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2 The Wright-Fisher model

This section introduces the Wright-Fisher model for the evolution of gene fre-
quencies in a finite population. It begins with a prospective treatment of a
population in which each individual is one of two types, and the effects of mu-
tation, selection, ...are ignored. A genealogical (or retrospective) description
follows. A number of properties of the ancestral relationships among a sample
of individuals are given, along with a genealogical description in the case of
variable population size.

2.1 Random drift

The simplest Wright-Fisher model (Fisher (1922), Wright (1931)) describes
the evolution of a two-allele locus in a population of constant size undergoing
random mating, ignoring the effects of mutation or selection. This is the so-
called ‘random drift’ model of population genetics, in which the fundamental
source of “randomness” is the reproductive mechanism.

A Markov chain model

We assume that the population is of constant size N in each non-overlapping
generation n, n = 0,1,2,.... At the locus in question there are two alleles,
denoted by A and B. X,, counts the number of A alleles in generation n.
We assume first that there is no mutation between the types. The population
at generation r + 1 is derived from the population at time r by binomial
sampling of N genes from a gene pool in which the fraction of A alleles is its
current frequency, namely 7; = i/N. Hence given X, = i, the probability that
Xrp1 =718

Pij = < )7‘(,’(1—7‘(’,)]\[_], OSZ,JSN (21])
J

The process {X,,r = 0,1,...} is a time-homogeneous Markov chain. It
has transition matrix P = (p;;), and state space 8§ = {0,1,..., N}. The states
0 and N are absorbing; if the population contains only one allele in some
generation, then it remains so in every subsequent generation. In this case,
we say that the population is fized for that allele.

The binomial nature of the transition matrix makes some properties of the
process easy to calculate. For example,

erl
N

]E(X'r"Xr—l) =N :Xr'—h
so that by averaging over the distribution of X, _; we get E(X,) = E(X,_1),
and

E(X,) =E(Xyp), r=1,2,.... (2.1.2)
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The result in (2.1.2) can be thought of as the analog of the Hardy-Weinberg
law: in an infinitely large random mating population, the relative frequency
of the alleles remains constant in every generation. Be warned though that
average values in a stochastic process do not tell the whole story! While on
average the number of A alleles remains constant, variability must eventually
be lost. That is, eventually the population contains all A alleles or all B alleles.
We can calculate the probability a; that eventually the population contains
only A alleles, given that Xy = i. The standard way to find such a probability
is to derive a system of equations satisfied by the a;. To do this, we condition
on the value of X;. Clearly, ap = 0,ay =1, and for 1 <7 < N — 1, we have

N-1
ai = pio-0+piv -1+ Zpijaj~ (2.1.3)
=1

This equation is derived by noting that if X; = j € {1,2,...,N — 1}, then
the probability of reaching N before 0 is a;. The equation in (2.1.3) can be
solved by recalling that E(X; | Xo =) =1, or

N
Y pij =i
7=0

It follows that a; = Ci for some constant C'. Since ay = 1, we have C = 1/N,
and so a; = i/N. Thus the probability that an allele will fix in the population
is just its initial frequency.

The variance of X, can also be calculated from the fact that

Var(X,) = E(Var(X,|X,_1)) + Var(E(X,| X;-1))-
After some algebra, this leads to
Var(X,) = E(Xo)(IN — E(Xp))(1 — A") + A" Var(Xo), (2.1.4)

where
A=1-1/N.

We have noted that genetic variability in the population is eventually lost.
It is of some interest to assess how fast this loss occurs. A simple calculation
shows that
E(X,(N — X)) = NE(Xo(N — Xo)). (2.1.5)
Multiplying both sides by 2N~2 shows that the probability h(r) that two
genes chosen at random with replacement in generation r are different is

h(r) = A"h(0). (2.1.6)

The quantity h(r) is called the heterozygosity of the population in generation
r, and it measures the genetic variability surviving in the population. Equation
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(2.1.6) shows that the heterozygosity decays geometrically quickly as r — oc.
Since fixation must occur, we have h(r) — 0.

We have seen that variability is lost from the population. How long does
this take? First we find an equation satisfied by m;, the mean time to fixation
starting from Xy = ¢. To do this, notice first that mo = my = 0, and, by
conditioning on the first step once more, we see that for 1 <7 < N —1

N-1
m; =pio-1l+pinv-1+ Zpij(1+mj)
i=1
N
=1 +Zpijmj. (2.1.7)
j=0

Finding an explicit expression for m; is difficult, and we resort instead to an
approximation when N is large and time is measured in units of N generations.

Diffusion approximations

This takes us into the world of diffusion theory. It is usual to consider not the
total number X,. = X(r) of A alleles but rather the proportion X, /N. To get
a non-degenerate limit we must also rescale time, in units of N generations.
This leads us to study the rescaled process

Yn(t) = N"'X(|Nt]), t=>0, (2.1.8)

where |z] is the integer part of x. The idea is that as N — oo, Yn(:) should
converge in distribution to a process Y (-). The fraction Y (¢) of A alleles at
time t evolves like a continuous-time, continuous state-space process in the
interval 8 = [0,1]. Y(+) is an example of a diffusion process. Time scalings in
units proportional to N generations are typical for population genetics models
appearing in these notes.

Diffusion theory is the basic tool of classical population genetics, and there
are several good references. Crow and Kimura (1970) has a lot of the ‘old
style’ references to the theory. Ewens (1979) and Kingman (1980) introduce
the sampling theory ideas. Diffusions are also discussed by Karlin and Taylor
(1980) and Ethier and Kurtz (1986), the latter in the measure-valued setting.
A useful modern reference is Neuhauser (2001).

The properties of a one-dimensional diffusion Y(-) are essentially deter-
mined by the infinitesimal mean and variance, defined in the time-homogeneous
case by

uly) = Jim A E(Y (£ + )~ Y(8) | Y (1) = v),
o*(y) = lim A'E((Y (£ + ) = Y(1)* | Y (8) = ).
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For the discrete Wright-Fisher model, we know that given X, = i, X, 4 is
binomially distributed with number of trials N and success probability i/N.
Hence

E(X(r+ 1)/N — X(r)/N | X(r)/N = i/N) =0,
E((X(r + 1)/N — X(r)/N)? | X(r)/N = i/N) = =~ (1 _ i) ,

so that for the process Y (-) that gives the proportion of allele A in the popu-
lation at time ¢, we have

w(y) =0, 0'2(y) =y(l—y), 0<y<1. (2.1.9)

Classical diffusion theory shows that the mean time m(x) to fixation, start-
ing from an initial fraction x € (0,1) of the A allele, satisfies the differential

equation
1

5,5(1 —ax)m’(z) = -1, m(0) =m(1)=0. (2.1.10)
This equation, the analog of (2.1.7), can be solved using partial fractions, and
we find that

m(x) = —2(xlogz + (1 —z)log(l —z)), 0<z <1 (2.1.11)

In terms of the underlying discrete model, the approximation for the ex-
pected number m; of generations to fixation, starting from ¢ A alleles, is
m; = Nm(i/N). If i/N =1/2,

Nm(1/2) = (—2log2)N ~ 1.39N generations,
whereas if the A allele is introduced at frequency 1/N,

Nm(1/N) = 2log N generations.

2.2 The genealogy of the Wright-Fisher model

In this section we consider the Wright-Fisher model from a genealogical per-
spective. In the absence of recombination, the DNA sequence representing
the gene of interest is a copy of a sequence in the previous generation, that
sequence is itself a copy of a sequence in the generation before that and so on.
Thus we can think of the DNA sequence as an ‘individual’ that has a ‘parent’
(namely the sequence from which is was copied), and a number of ‘offspring’
(namely the sequences that originate as a copy of it in the next generation).

To study this process either forwards or backwards in time, it is conve-
nient to label the individuals in a given generation as 1,2,..., N, and let v;
denote the number of offspring born to individual ¢, 1 <¢ < N. We suppose
that individuals have independent Poisson-distributed numbers of offspring,



