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INTRODUCTION

In 1975 a new venture in education by and for the chemical engineering community was
initiated. Prepared by the CACHE Corporation (Computer Aids for Chemical Engineering
Education) and under the sponsorship of the National Science Foundation (Grant HES 75-
03911), a series of small self-study fundamental concept modules for various areas of
chemical engineering were commissioned, Chemical Engineering Modular Instruction,
CHEMI.

It has been found in recent studies that modular study is more effective than traditional
instruction in both university and continuing education settings. This is due in large mea-
sure to the discrete focus of each module, which allows the student to tailor the speed and
order of his or her study. In addition, since the modules have different authors, each writing
in his or her area of special expertise, they can be produced more quickly, and students may
be asured of timely information. Finally, these modules have been tested in the classroom
prior to their publication.

The educational effect of modular study is to reduce, in general, the number of hours
required to teach a given subject; it is expected that the decreased time and expense in-
volved in engineering education, when aided by modular instruction, will attract a larger
number of students to engineering, including those who have not traditionally chosen engi-
neering. For the practicing engineer, the modules are intended to enhance or broaden the
skills he or she has already acquired, and to make available new fields of expertise.

The modules were designed with a variety of applications in mind. They may be pursued
in a number of contexts: as outside study, special projects, entire university courses (credit
or non-credit), review courses, or correspondence courses; and they may be studied in a
variety of modes: as supplements to course work, as independent study, in continuing
education programs, and in the traditional student/teacher mode.

A module was defined as a self-contained set of learning materials tat covers one or more
topics. It should be sufficiently detailed that an outside evaluation could identify its educa-
tional objectives and determine a student’s achievement of these objectives. A module
should have the educational equivalent of a one#b three hour lecture.

The CHEMI Project Staff included:

E. J. Henley, University of Houston, Director
W. Heenan, Texas A & I University, Assistant Director
Steering Committee:
L. B. Evans, Massachusetts Institute of Technology
G. J. Powers, Carnegie-Mellon University
E. J. Henley, University of Houston
D. M. Himmelblau, University of Texas at Austin
D. A. Mellichamp, University of California at Santa Barbara
R. E. C. Weaver, Tulane University
Editors:
Process Control: T. F. Edgar, University of Texas at Austin
Stagewise and Mass Transfer Operations: E. J. Henley, University of
Houston, J. M. Calo, Brown University
Transport: R. J. Gordon, University of Flordia
Thermodynamics: B. M. Goodwin, Northeastern University
Kinetics: B. L. Crynes, Oklahoma State University
H. S. Fogler, University of Michigan
Material and Energy Balances: D. M. Himmelblau, University of Texas
at Austin
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Curriculum Analysis: E. J. Henley, University of Houston

The second phase of the project, designed to fill in gaps as well as develop new modules,
is under the direction of D. M. Himmelblau, University of Texas at Austin.
Steering Committee:
B. Carnahan, University of Michigan
D. E. Griffith, Oklahoma State University
L. Harrisberger, University of Alabama

D. M. Himmelblau, University of Texas at Austin

V. Slamecka, Georgia Institute of Technology

R. Tinker, Technology Education Research Center

Editors (* indicates a new task force head):

Process Control: T. F. Edgar, University of Texas at Austin

Stagewise and Mass Transfer Operations: J. M. Calo, Brown University
E.J. Henley, University of Houston

Transport: R. J. Gordon, University of Florida

Thermodynamics: G. A. Mansoori*, University of Ilinois at Chicago Circle

Kinetics: B. L. Crynes, Oklahoma State University

Material and Energy Balances: E. H. Snider*, University of Tulsa
Design of Equipment: J. C. Beckman, Arizona State University

H. S. Fogler, University of Michigan

Volume 1 of each series will appear in 1980; Volume 2 in 1981; and so forth. A tentative

outline of all volumes to be produced in this series follows:

SERIES C: TRANSPORT

Volume 1. Momentum Transport and Fluid Flow

Cl.1
Cl.2
Cl1.3
Cl.4
Cl.5
Cl.6

Simplified One-Dimensional Momentum Transport Problems

Friction Factor

Applications of the Steady-State Mechanical Energy Balance

Flow Meters
Packed Beds and Fluidization
Multi-Phase Flow

Volume 2. Momentum Transport, Viscoelasticity and Turbulen€e

C2.1
C2.2
c23
C2.4
€25

Volume 3. Equation of Motion, Boundary Layer Theory and Measurement Techniques

C3:1
C3:2
C33
C3.4
C3.5
C3.6

Non-Newtonian Flow I—Characterization of Fluid Behavior
Non-Newtonian Flow II—Fully Developed Tube Flow
Viscoelastic Fluid Flow Phenomena

Turbulence: General Aspects Illustrated by Channel or Pipe Flow

Turbulent Drag Reduction

Measurements of Local Fluid Velocities

Equation of Motion

Navier Stokes Equation for Steady One-Directional Flow

Boundary Layer Theory

Boundary Layer Theory: Approximate Solution Techniques
Diffusivity Measurement Techniques in Liquids

Volume 4. Mathematical Techniques and Energy Transport

C4.1
C4.2
C4.3

Mathematical Techniques I—Separation of Variables
Mathematical Techniques II—Combination of Variables
Elementary Steady-State Heat Conduction

Modular Instruction Series

G. K. Patterson

R. J. Gordon and N. H. Chen

D. W. Hubbard

W. F. Beckwith

W. J. Hatcher, Jr.

R. A. Greenkorn and D. P. Kessler

V. Boger and A. L. Halmos
V. Boger and A. L. Halmos
V. Boger and R. I. Tanner
S. Berman

K. Patterson

©zPoo

. S. Berman and H. Usui
. K. Patterson

. C. April

. J. Gordon

. L. Cerro

. L. Vilker

<ITIOQZ

R. S. Subramanian
R. S. Subramanian
W. J. Hatcher



C4.4  Natural Convection R. D. Noble

C4.5  Unsteady-State Heat Conduction K. I. Hayakawa
C4.6  Differential Energy Balance R. D. Noble
Volume 5. Mass Transport

Cs:1 Unsteady-State Diffusion S. Uchida

Cc5.2 Mass Transfer in Laminar Flow S. H. Ibrahim
C5.3 Turbulent Mass Transfer S. H. Ibrahim
Volume 6. Transport Phenomena—Special Topics

Cé6.1 Bubble Dynamics: An Illustration of Dynamically Coupled Rate Processes T. G. Theofanous
C6.2 Miscible Dispersion R. S. Subramanian
6.3 Biomedical Examples of Transport Phenomena I—Coupled Diffusion Effects R. H. Notter

C6.4 Biomedical Examples of Transport Phenomena II—Facilitated Diffusion R. H. Notter

C6.5 Mass Transfer in Heterogeneous Media P. Stroeve

C6.6 Advancing Front Theory R. Srinivasan and P. Stroeve

Publication and dissemination of these modules is under the direction of Harold I. Abramson, Staff Director, Educational
Activities, AIChE. Technical Editor is Lori S. Roth. Chemical engineers in industry or academia who are interested in
submitting modules for publication should direct them to H. I. Abramson, Staff Director, Educational Activities, American
Institute of Chemical Engineers, 345 East 47th Street, New York, N.Y. 10017.
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Module C4.1

Mathematical Techniques I—
Separation of Variables

R. Shankar Subramanian

Department of Chemical Engineering
Clarkson College of Technology
Potsdam, New York 13676

OBJECTIVES

After completion of this module, the student
should be able to solve partial differential
equations using the method of separation of
variables.

PREREQUISITE MATHEMATICAL
SKILLS
1. Elementary calculus and differential
equations.
2. Previous exposure to Fourier Series would
be preferable but not necessary.

PREREQUISITE ENGINEERING AND
SCIENCE SKILLS

1. Ability to construct elementary models of
transport problems is preferable but not
necessary.

" g y

Several problems in the area of transport phenome-
na involve the solution of partial differential equations.
Some typical examples are unsteady couette flow,
steady heat transfer to a fluid flowing through a pipe,
and mass transfer to a falling liquid film. In each case,
one can write a partial differential equation describing
the process. Such equations are solved by first reducing
them to ordinary differential equations using one of
several techniques. The ordinary differential equations,
then, are solved by well-known methods. This module
covers a powerful technique known as the Separation
of Variables. It is used widely for the solution of linear
partial differential equations. Through example, you
will learn how and when to use the technique and
what its limitations are. The example chosen is a
simplified version of the popular Graetz problem
discussed in many transport phenomena texts.

Modular Instruction Series
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Figure 1. Sketch of the system.

THE MODELING OF THE PROBLEM

Consider a fluid of thermal diffusivity « flowing in a
channel formed by the space between two wide parallel
plates, a distance 2b apart, as shown in Figure 1.

The fluid enters the channel at a uniform tempera-
ture T, and is heated by the plates which are main-
tained at some other constant temperature 7,,. In the
usual version, as posed by Graetz in 1885 (2), in a
circular tube, the fluid is assumed to be in laminar
flow. However, it is easier, especially for the purposes
of illustration, to choose the case of steady uniform
plug flow in the channel. This assumption allows us to
develop solutions in terms of simple well-known
trigonometric functions; however, the same procedure
can be used with more realistic flows.

If some more simplifying assumptions are made [see
any standard textbook on transport phenomena such
as Bird et al. 1960 (1) or Knudsen and Katz, 1958 (5)],
the following partial differential equation can be
written for the steady temperature field in the fluid.

or

oa _ 0T
“"ax_

ayz (1)

o

Here, u, is the plug flow velocity, and x and y are the



axial and transverse coordinates in the flow channel;
these coordinates also are identified on Figure 1.

In order to determine the solution of Equation 1
uniquely, boundary conditions are necessary. From the
physical problem, one knows that the temperature
everywhere at the inlet is 7, (note that this is strictly
not true if one accounts for axial conduction), so that

IO, y)=T, (2a)
Further, the fluid at either wall attains the temperature
of the wall at all axial locations. So,

T(x,b)=T, (2b)
and
T(x, =b)=T,, e

Actually, it is quite easy to see from the physics of the
problem that the temperature distribution in the
bottom half of the channel will be a mirror image of
that in the top half. Hence, by symmetry, there can be
no heat flux across the centerline in the channel. This
means that the transverse temperature gradient is zero
at y=0.

g (x, 0)=0

dy
This condition is more convenient to use than
Equation 2c. Of course, either one will be appropriate
in this problem, and both should lead to the same
unique solution. It is convenient to convert the above
equations to dimensionless form so that the number of
parameters is minimized.

Defining dimensionless axial and transverse
coordinates,

(2d)

oax

X (3a)
y
= (k)
and a dimensionless temperature,
T,
G(X, Y):% (3(;)

TO—TW
one may transform Equations 1, 2a, 2b, and 2d to the
following form:

00 %0

X or? i
600, Y)=1 (5a)
0(X, 1)=0 (5b)
a0

sy (X, 0)=0 (5¢)

Note that Equations 5b and 5c are homogeneous
boundary conditions; that is, any constant times 0 also
will satisfy the same conditions.

It is interesting to note that Equations 4 and 5 also
result from the mathematical modeling of several other

2

situations such as unsteady diffusion or heat conduc-
tion in a slab.

SEPARATION OF VARIABLES

To solve Equations 4 and 5 using the “separation of
variables” technique, one must look for a solution to
Equation 4 (ignoring Equations 5 temporarily) in a
very specific form—a product of a function of X and a
function of Y. That is,

0(X, Y)=G(X)p(Y) (6)

If this solution is introduced in Equation 4, and then
the resulting equation divided throughout by G¢, then
G ’ "
L ™
L g
The primes, of course, refer to differentiation with
respect to the argument.
Equation 7 implies that a function of only X, on the
left-hand side, is equal to a function of only Y on the
right-hand side. The only way for this to be true is for

each side to be equal to a constant C. Equating each
side to C gives two ordinary differential equations:

G'—CG=0 (8a)

¢~ Chp=0 (8b)
Equation 8a can be integrated to give

G(X)=pe X 9)

where f is a constant of integration. Note immediately
that C has to be nonpositive, since a positive value of

C will result in G becoming very large as X gets larger
and this makes no physical sense*. So, if one lets

C= —1?% where 4 is real, one is always assured that C

will be nonpositive. This gives us the following

equation for ¢(Y).

¢"+4%¢=0 (10)
This is a simple second-order ordinary differential

equation. Its solution is well-known, and can be
obtained by using e™ as the trial solution. It is,

¢(Y)=a, cos A\Y +a, sin iY (11)

Quite a few arbitrary constants (8, 4, a,, a,) have
been introduced in the solution procedure. Now, one
must try to determine them.

Let us first write our solution for 6.

(X, Y)=e "X [b, cos AY+b, sin Y]

Note that f has been eliminated as an arbitrary
constant by simply absorbing it into b, and b, ; that is,
b,=a,p, b,=a,p. Observe that there are three
boundary conditions on (X, Y) and three arbitrary
constants in the solution, Equation 12. One way to
determine these constants is to apply the boundary
conditions directly in Equation 12. However, since the

(12)

*More precise arguments can be given, but are beyond the scope of this
module.

American Institute of Chemical Engineers



solution is a product of a function of X and a function
of Y, one may logically expect the Y-dependent part to
satisfy the homogeneous boundary conditions on Y.

Applying Equation 5c at ¥=0 shows immediately that

b,A=0 (13)

This can be satisfied by either A=0 or b,=0. If =0 in
Equation 12, then 6(X, Y)=b, =1 in order to satisfy
Equation 5a. However, this solution will certainly not
satisfy the boundary condition at the wall, Y=1! So,
one discards this possibility and chooses, instead,

b,=0 (14)

This makes the solution simpler.

0(X, Y)=b,e **¥ cos 1Y (15)
Let us try the inlet condition at X =0 now.
00, Y)=1=b, cos AY (16)

This creates a problem. The only way Equation 16 can
be satisfied is if b, =1 and A=0. However, this leads
again to 0(X, Y)=1 everywhere, which as we know, is
not useful. Before throwing our hands up in despair,
let us see if anything can be salvaged using the
boundary condition at the wall, Y=1. It may seem odd
that the actual order of application of the boundary
conditions should make any difference, but let us try it
anyway. Equation 5b, applied to Equation 15, gives

b, cos 2=0 (17)

If b, =0, O(X, Y)=0 which is a useless solution since it
satisfies the boundary conditions on Y, but not the
inlet condition on X. So,

cos A=0 (18)

One obvious solution of Equation 18 is A= +7/2.
However, it is also clear that 2= +37n/2, +57/2 etc.
are all solutions or roots of Equation 18. One can
verify that 2= +n/2 and .= —n/2 give exactly the
same result in Equation 15 and, therefore, only one of
the two need be retained. This is true for all the roots.
For convenience, let us choose the positive roots here
and designate them with an appropriate subscript.
That is,

/. 2n—1
="
is a root of Equation 18 for n=1, 2, 3... If one
substitutes any one of the values of / given by
Equation 18 into Equation 15, a different solution will
result for each value! Since the constant b, is arbitrary
anyway, and each solution can have its own arbitrary
constant, these solutions can be written as

T (19)

0,(X, Y)=A,e ¥ cos 1,Y (20)

where A4,, A,, A,, etc. are arbitrary constants. Let us
see what has been done so far. For any positive integer
n, the right-hand side in Equation 20 is a solution of
the partial differential equation for 6(X, Y) and the
boundary conditions at Y=0 and Y=1. Let us try and
pick one of these solutions as the solution to our

Modular Instruction Series

problem; that is, one which also will satisfy the inlet
condition at X =0. Immediately, there is a problem,
since for any n, at X =0, the solution 6,= A, cos 1,Y
cannot satisfy our inlet condition. However, all is not
lost! Since the partial differential equation for (X, Y)
(with the homogeneous boundary conditions on Y) is
linear, the solutions may be added up, and the result
will still satisfy the partial differential equation and the
same homogeneous boundary conditions. This is a
very powerful principle usually referred to as super-
position of solutions. Let us try writing

0(X, Y)= i 0,(X,7Y)
=

Ae” "X cos 4, Y
1 (21)

Il
I8

n

Adding up a finite number of solutions is OK, but
when one adds an infinite set of them (since there are
an infinite number of roots represented in Equation
19), technically, it should be proven that the infinite
sum is convergent for the range of X and Y values of
interest. This can be shown fairly easily (see
Weitiberger, 1965 for further enlightenment). For this

.. module’s purposes, assume that the right-hand side of

Equation 21 is a convergent series.

Notice now that there is one more condition to
satisfy (Equation 5a) but an infinite number of
arbitrary constants, 4,. Apply this condition and see
what happens.

600, ¥)=1=L% "4 cos® ¥ (22)
n=1

How does one choose the A4,’s to satisfy this equation?
Would our choice be unique? The answers can be had
with some exposure to the Sturm-Liouville theory or
the Fourier series [for details, consult Hildebrand (3)1.
Sturm-Liouville theory, for instance, provides informa-
tion on the properties of the solutions of linear
second-order homogeneous ordinary differential
equations which contain an arbitrary parameter.
Usually, an equation which falls into this category
would be written in the following standard form [see
Hildebrand (3) for details on how to do this with any
second-order differential equation].

d d¢
-7 [pm dY]+[q(Y)+Ar(Y)]¢ 0 (23)
Equation 10 can be seen to be a special case of
Equagion 23 when p(Y)=1, q(Y)=0, (Y)=1 and
=7

When Equation 23 satisfies homogeneous boundary
conditions at the two ends of an interval, the differen-
tial equation and the boundary conditions are referred
to as a Sturm-Liouville system. It can be shown that
nontrivial solutions of this system exist, to within an
arbitrary multiplicative constant, only when the
parameter A takes on a certain set of values A, (n=1,
2, 3...) called eigenvalues. Corresponding to each
eigenvalue, the solution ¢, is referred to as an
eigenfunction. In our case, the homogeneous boundary

3



conditions on ¢(Y) are seen to be ¢'(0)=0 and
¢(1)=0. The eigenvalues are given by Equation 19 as

2n—1)*
4 5=(_n_l n? (24)
4
and the eigenfunctions are
¢, (Y)=cos 4, Y (25)

It turns out that the eigenfunctions of a Sturm-
Liouville system satisfy a very important and useful
property known as orthogonality. When the product of
any two of them is multiplied by r(Y) and integrated
over the interval, the result is zero! That is, in the case
at hand,

1 1

j r(Y)¢>m(Y)¢,,(Y)dY=j cos A, Y cos 4, YdY
0 0
=0 m=n (26)

Furthermore, it can be shown that any well-behaved
arbitrary function in the interval of interest can be
expanded into an infinite series of eigenfunctions of a
“proper” Sturm-Liouville system (the definition of
“proper” in this context can be found in Hildebrand,
1976) in the form

f(¥)=3 A,¢.Y)

and the coefficients 4, may be determined as follows.
Multiply both sides of Equation 27 by r(Y)¢,, (Y¥) and
integrate over the interval (taken to be 0 to 1 in this
case).

(27)

1 1
j HY)f(Y)p(Y)dY =} A,,J Y)Y )P, (Y)dY
n 0

0

1
= A, J H¥)$ 2 (Y)dY (28)
0

All the integrals except one in the infinite series are
zero by the orthogonality property from Equation 26.
Therefore, S

1
j r(Y)f(Y)pu(Y)dY
t (29)

r HY) (Y)Y
0

A:

m

How is all this going to help? Go back and review
Equation 22. See that it, indeed, searches for and
reveals an expansion of an arbitrary function, in this
case, 1, in terms of eigenfunctions of a Sturm-Liouville
system. So, Equation 29 can be used to calculate all
the unknown constants A, (usually referred to as
“expansion coefficients”). Substituting (Y)=1, f(Y)=1,
and ¢,(Y)=cos 4,Y, gives

1
J cos A, YdY

4= S0 ) sin 4,,
m— M -
j cos? A, YdY P
0
—_ 2 ( l)m—l
b (30)

-

or

_E _qy-—1
An—i( 1) @31

n

Therefore, the solution for the temperature field in the
channel is

( £ l)n =&
An
where 4, are given by Equation 19.

ey
e *nX cos A, Y

0(X, Y)=2 i (32)
n=1

The Average Temperature

The bulk or cup-mixing average temperature in our
system is defined by

b
J Tu,dy
Ty(x)= Y5 ——

b
j udy
—=b

If one uses the definition of the dimensionless tempera-
ture, Equation 3c, in Equation 33, and it is recognized
that u, is a constant, the dimensionless bulk average
temperature will be

1 1
Ob(X)=§j

(33)

0(X, Y)dY (34)
1

Note that Equation 32 predicts a temperature
distribution which is an even function of Y; that is, the
temperature field is symmetric with respect to =K.
The result is that one can rewrite Equation 34 also as

6,,(X)=j (X, Y)dY (35)

0

Substituting for 6(X, Y) from Equation 32 and
performing the necessary calculations finally leads to

o ,-A2X
0,(X)=2 )
n=1

Note that as X becomes very large, both 6(X, Y) and
0,(X) approach zero. This is physically correct since
the temperature of the fluid everywhere in the channel
will approach the wall temperature for large X.

e

(36)

12
Al

The Nusselt Number

The rate of heat transfer between the walls of the
channel and the fluid is of interest in several appli-
cations. At any axial location, the heat flux, g, from the
walls to the fluid is given by

o,
0y ly=—s Oy
where k is the thermal conductivity of the fluid. It is

customary to define a heat transfer coefficient h for the
system. This is defined here by

q=h(T,—T,) (38)

The Nusselt number is the dimensionless form of the

q=—k (37)

p==b P=rtb

American Institute of Chemical Engineers



heat transfer coefficient. In this problem it is defined by

_4hb
"k
By using earlier definitions and the temperature
distributions, the following expression may be obtained
for the Nusselt number.

i e-iﬁx
NN.,(X)=4"=1,1—_T2X— (40)
Y
A

n=1

Ny (39)

CONCLUDING REMARKS

This module has covered an extremely useful
technique for the solution of partial differential
equations often encountered in transport problems.
From a computational point of view, the infinite series
in Equations 32, 36, or 40 are useful only if they
converge fairly rapidly. It can be seen that this will
happen if X is sufficiently large; that is, if one is
interested in axial stations away from the inlet. Module
C4.2 shall cover another technique of solution which is
most useful in the inlet region. Aside from compu-
tational limitations, the “separation of variables”
procedure does not work in problems such as the
present one if the partial differential equation or the
boundary conditions on Y are nonhomogeneous. It, of
course, cannot be used with nonlinear partial differen-
tial equations. For complete details on the conditions
under which the method can be used, see Weinberger

©6).

The example solved in this module treated plug flow.

The more realistic case of heat transfer with Poiseuille
flow has been analyzed by several workers. You may
refer to the book of Kays and Crawford (4) for an
exhaustive treatment of this problem.

NOMENCLATURE

a,, a; = constants

A expansion coefficients defined in Equation 29

channel half-width

by, b, = constants

= function of X (see Equation 6)

= heat transfer coefficient defined in Equation 38

= thermal conductivity of the fluid

= Nusselt number (see Equation 39)

= heat flux from wall to fluid (see Equation 37)

temperature field in fluid

= average temperature (see Equation 33)

temperature of fluid at the inlet

wall temperature

magnitude of plug flow velocity

axial coordinate

= dimensionless axial coordinate defined in
Equation 3a

= transverse coordinate

= dimensionless transverse coordinate defined in
Equation 3b

m

MEE NHNNS 2 =0
|

~
I
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o = thermal diffusivity of fluid

p = -constant

0 = dimensionless temperature field

0, = dimensionless average temperature (see
Equation 34)

4, = constants defined in Equation 19

¢, = eigenfunctions defined in Equation 25
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STUDY PROBLEMS

1. Solve Equation 8a using any technique and show
that Equation 9 is the solution. Why is a positive C
physically unrealistic?

2. Solve Equation 10 to obtain Equation 11 as the
solution.

3. Show, by direct integration, that Equation 26 is
satisfied by the eigenfunctions given in Equation 25.

4. Obtain Equation 36 by performing the integration
required in Equation 35.

5. From information available in this module, show
the following result.

& 1 1 1 1

Loy rvtyty
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6. Fill in the details required in the derivation of
Equation 40. Can you figure out the behavior of
Ny, (X)as X—>00?

HOMEWORK PROBLEMS

1. Work out the details of the transformations given in
Equation 3 in going from Equation 1 to Equation 4.

2. This problem should illustrate the importance of
homogeneous boundary conditions in the success of
the technique. Attempt to separate the solution of
Equations 1 and 2a, 2b, and 2d by writing:

T(x, y)=T,(x)T,(y)

Do you encounter any problems? Where? Now, try



writing:
Y(x, y)=T-T,

and derive the corresponding partial differential

equation and boundary conditions on y(x, y). Then,

substitute a separation of variables solution for .
That is, write

Y(x, y)=G(x)p(y)

and derive the differential equations satisfied by

G(x) and ¢(y) and the boundary conditions on ¢(y).

. A related problem is that of heat transfer in plug
flow between parallel plates where there is a
uniform heat flux g,, at each wall. If one makes the
proper assumptions, the same differential equation
(Equation 1) can be derived for the temperature
field. The boundary conditions, in this case, will be

T, y)=T, (H-1)
oT

k 3 (x, b)=gq,, (H-2)

or

E (X, 0) =0 (H-3)

a) By defining X =(ax)/(b?u,), Y=y/b and 6(X,
Y)=k(T—-T,)/(bg,,), transform the partial

differential equation and the boundary conditions

to the following form.

00 %0 .

ax ~ox? )
00, Y)=0 (H-5)
o0

ay (X, D=1 (H-6)
00

ay (X, 0=0 (H-7)

b) In order to use separation of variables, it is first

necessary to eliminate the inhomogeneity in
Equation H-6. This is done by breaking up the
solution for 0 as follows.

0(X, Y)=0,(X, Y)-0,(X, Y) (H-8)

where 0, is supposed to approach zero for large X
so that 6, will be the solution for such large X.

0.(X, Y) can be obtained relatively easily. It is
given by

04X, Y)=X +—sv (H-9)
Using this information, derive the partial

differential equation and boundary conditions for

04(X, Y). Solve for 0,(X, Y) using separation of
variables.
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Module C4.2

Mathematical Techniques lI—
Combination of Variables

R. Shankar Subramanian

Department of Chemical Engineering
Clarkson College of Technology
Potsdam, New York 13676

OBJECTIVES

After completion of this module, the student
should be able to solve partial differential
equations using the method of combination of
variables.

PREREQUISITE MATHEMATICAL
SKILLS

1. Elementary calculus and differential

equations.

PREREQUISITE ENGINEERING AND
SCIENCE SKILLS

1. Elementary modeling of transport

problems (preferable, but not necessary).

INTRODUCTION

This module is an introduction to the technique of
Combination Variables for the solution of partial
differential equations commonly encountered in
modeling transport problems. It turns out in several
practical problems that this technique complements the
separation of variables solution (See Module C4.1). The
latter solution is hard to compute due to slow series
convergence in a certain range of variables, and it is
precisely in this range that “combination of variables”
is most useful and convenient. Let us choose a simple
example from the area of heat transfer for illustrating
the details of the technique.

MODELING OF THE PROBLEM

Consider a long slab of thermal diffusivity a, shown
in Figure 1, which is insulated everywhere except for
its ends. Initially, the slab is at a uniform temperature
T,. At time t =0, the end x=0 is raised to a new
temperature 7', , and maintained at this value for all
future time. Let us not worry about what happens at
the other end at this stage, except to say that the slab

Modular Instruction Series

is very long. Under these conditions, the cross—
sectional geometry of the slab is immaterial—it can be
rectangular, cylindrical or any other shape as long as it
is uniform. There will be no temperature variations in
the”STab in the transverse direction at any given axial

__location; the only spatial variation of temperature will

be with the axial coordinate x. Such a problem is
usually referred to as an “unsteady one-dimensional
conduction.” Assuming that the thermal diffusivity is
independent of temperature, it can be shown that the
temperature in the slab 7T'(t, x) satisfies the partial
differential equation,

or - @*T

i e

ot ox*
Here ¢t is time and x is the axial coordinate indicated
in the sketch.

In order to obtain a unique solution of Equation 1
for our problem, it is necessary to formulate initial and

boundary conditions. From the physics of the problem,
one may write

(1)

T, x)=T, (2
and
(0 =T, 3)

INSULATED SIDES
I P L L d i s

T(1,00=T, —>x T(0,x)= T,

LIS BLTRHARA LR LLLLAL
INSULATED SIDES
Figure 1. Sketch of the System.



Since there is a second derivative in x in Equation 1,
one more boundary condition is needed on this
coordinate. If the temperature or the heat flux at the
other end of the slab were prescribed, there would,
indeed, be such a condition. However, in a very long
slab, one would hardly expect the behavior of the
temperature field near the end x=0 to be influenced
by what happens at the other end for relatively small
values of time. For such values of time, the other end
of the slab might as well be at infinity. Therefore, as
the second boundary condition, let us say that the
temperature as x approaches infinity is going to
remain at its initial value of T,.

T(t, 0)=T, (4)

Now that the formulation of the mathematical model
is complete, one is ready to proceed to solve for the
temperature field in the slab. It is worthwhile pointing
out at this stage that Equations 1 to 4 also describe
several other physical problems. For instance, the
concentration distribution for plug flow in a channel
near the inlet satisfies an identical model. Also, the so-
called “penetration theory” of mass transfer to a falling
liquid film results in the same mathematical model for
the concentration distribution in the film. In the area
of fluid mechanics, the same equations arise when
modeling the velocity field in the vicinity of a plate
suddenly set in motion in a fluid.

COMBINATION OF VARIABLES

The essence of this solution procedure can be
understood if one examines qualitatively, the solution
for the temperature field in the slab. Figure 2 shows
what may be expected for various values of time. At
time 0, the temperature is 7', at x=0 and T, every-
where else. After a small amount of time ¢, haselapsed,
it will change form T, at x=0 to practically T, a little
distance 6 away due to the process of heat conduction
into the slab. Think of the region where the tempera-
ture changes from T, to T, as a boundary layer. It
should be realized that in principle, this region is of
infinite length since the temperature is not quite 7,, for
t>0, anywhere in our slab. There are several different
definitions of the thickness of a “boundary layer” in
this situation. However, for our qualitative purposes,
assume that the “boundary layer” is that region where
the temperature changes from 7, to practically T, .
Now, as time gets larger, the boundary layer increases
in thickness and one can expect the kind of tempera-
ture profiles shown in Figure 2. Since the physical
process is always the same, it is tempting to make a
guess at this stage. What will happen if the tempera-
ture profile is plotted against a scaled axial coordinate,
n=(x)/[(z)]? Would the profiles at various values of
time simply merge into one master profile as shown in
Figure 3? In other words, are the profiles similar to
each other, differing only by a scaling factor? What is
being said here, in mathematical terms, is that 7'(¢, x)
= ¢(n) where 7 is a new coordinate which combines
x and t in a particular way. If this is true, it will, of
course, make life simpler since one can reduce the

partial differential equation for 7'(, x) to an ordinary
differential equation for ¢(n). Let us start with the
assumption that this procedure is going to work and
trace through the consequences. Any inconsistency
encountered along the way means that the individual
profiles cannot be combined into one master profile;
that is, they are not similar.

Let us begin transforming from the (¢, x) coordinate
system to the new coordinate

X

'7=% (5)

keeping in mind that J(t) has not yet been defined
precisely, except that it is only a function of time ¢. For
transforming the differential equation for 71t, x) into
one for ¢(n), one needs to transform the various
derivatives using the chain rule. For instance,

OF b s i x

ot ot dy ymdw‘52¢
where the primes refer to differentiation with respect to
the argument.

Similarly,

T ondp 1do ¢

Ox oxdn ody o
and

o’T ¢

ox: iR

Substituting in Equation 1, yields:
51
H+ By I=0
i i (6)

Things look bad because both x and ¢ appear in the
equation for ¢ which “apparently” means that ¢ is not
a function of only y—the chain rule used earlier to
convert derivatives implicitly assumed this to be true.

.

13>1,>1,>0

TEMPERATURE, T

DISTANCE, X(ARBITRARY UNITS)
Figure 2. Qualitative temperature profiles in the slab.
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Figure 3. The similarity hypothesis.

But one can use the definition of # given in Equation 5
to eliminate x from Equation 6. Let us see if this helps.
Equation 6 can now be rewritten as

0 do
Il+ el /=0

¢ [a dt:| ne (7)
Now, the equation only has time appearing in it
(through & dé/dt) besides . However, since 6 has not
been defined precisely so far, here is a chance to do it
and, at the same time, eliminate our problem. Let

5do

adt (8)
where C is a constant. This removes the inconsistency
encountered before. Equation 7 becomes

d*¢ do
Cn—=
an? + ”dn 0 9)

Taking stock now, one has a second—order ordinary
differential equation for ¢(n) which needs two bound-
ary conditions in order to obtain a unique solution,
and a first—order ordinary differential equation for J(t)
needing one initial condition to solve for § uniquely.
An arbitrary constant C which needs to be determined
or eliminated has also been introduced. Let us try to
use Equations 2 through 5 to determine the required
conditions. At x=0, n =0; therefore,

d0)=T(t, 0)=T, (10)
As x— 00, n— 0. So,

P(0)=T(t, ©0)=T, (11

Now, let us see what Equation 2 implies. At time zero,
T=T, and, therefore,

X
¢[m]=To (12)

If 5(0) is a nonzero constant, this gives us an incon-
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sistency all over again; that is, one of the boundary
conditions on ¢ would still have x appearing in it and
¢, therefore, would not be a function of only #. The
problem is eliminated neatly by the assumption

5(0)=0 (13)

which gives an initial condition on 6(t). This conclu-
sion can also be reached from the physical association
of § with the concept of a thermal boundary layer
thickness. At time zero, the boundary layer has to have
a zero thickness. Equation 12, therefore, becomes

¢(0)=T, (14)

(since our interest lies only in positive values of x).
Note that Equation 14 is identical to Equation 11, and
that there are really only two boundary conditions on
¢, Equations 10 and 11. This is an essential condition
for combination of variables to work.

Now, it is possible to solve the differential equations
for ¢(x) and &(t), and to apply the conditions given by
Equations 10, 11 and 13 in order to arrive at the
following results.

(t)=/2aCt (15)

- C
T(t, )= () =T, + (I, ~T,) erfec { \g n} (16)

where erfc {y} is the complementary error function

given by
v
J e *dz
st s il

- 2
e=Fdz
0

Y
=1—i j e‘zzdz
Jx Jo (17)

For learning more about the error function (erf) and
the complementary error function (erfc), see
Abramowitz and Stegun (1).

If one rearranges Equation 16, introduces the
definition of  from Equation 5, and uses Equation 15,
the following final solution is found for the tempera-
ture field in the slab.

drts =erfc { & } (18)
Tl id Ta 2 ot

erfc (y)=1—erf (y)

It is important to note that the arbitrary constant C
has been eliminated in this process. Any value could
have been chosen for it and the result would have been
the same. However, the expression for d(t) would be
affected as indicated in Equation 15. It is customary to
choose C =2 in this situation, so that the right-hand
side of Equation 16 looks slightly simpler (5). This last
reference also shows how the same procedure used
above can be used in much more complex situations
where the boundary layer thickness ¢ is a function of
time as well as a coordinate.



Concluding Remarks

Since the method outlined here utilizes the concept
of similar temperature profiles, it also is referred to as
the “similarity solution” technique. It is useful in
several steady and unsteady heat and Jor mass transfer
situations. As mentioned earlier, one of these appli-
cations to mass transfer is known as the penetration
theory and you can learn more about this from Bird et
al. (2). Another classic example in the area of transport
phenomena is the Leveque solution for entrance region
heat transfer. This is discussed in detail by Knudsen
and Katz (4). The Leveque problem is presented in this
module as Homework Problem 2.

What are the limitations of this solution procedure?
Earlier, it was said that in the slab, the other end is far
away and does not “feel” the effect of the change at
x=0 for small values of time. Therefore, the solution
just developed would not be valid for large values of
time. How can one decide what is “large” and what is
“small?” From a standard table of values of the error
function (1), it is known that

erf(2) ~ 0.9953
so that
erfc(2) ~ 0.0047

Therefore, for a given time ¢, at x=4\/a,

T-T,

=T, "~ 0.0047
That is, the difference between the temperature at that
x and the initial temperature is less than 0.5% of the
difference between the temperature at x=0 and the
initial temperature; so, one may arbitrarily say that
this is the axial location where the effect of the change
at x=0 is barely felt. This can be used to make an
estimate of the maximum value of time when this
solution procedure starts breaking down. For instance,
if the slab is L units long and changes in temperature _ ¢
are made at both ends at time zero,

L 2
i e
i fubdey

The actual factor of 1/64 in Equation 19 is, of course,
quite arbitrary. For instance, if one is willing to
tolerate a change of 59 at a given axial location as
signifying negligible change, this factor would become
approximately 1/30. In any case, it is clear that as time
increases, the solution becomes progressively worse for
any finite slab. Incidentally, the solutions of this and
other closely related problems are given in the book by
Carslaw and Jaeger (5).

(19)

NOMENCLATURE

C = constant
erf = error function

10

complementary error function

= length of the slab

= time

temperature field in the slab

= initial temperature in the slab

= temperature x =0 in the slab

= axial coordinate in the slab

= thermal diffusivity

thermal boundary layer thickness
similarity coordinate defined in Equation 5
= function of 5 satisfying Equations 7, 10, and 11
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STUDY PROBLEMS

1. Solve Equation 8 for the boundary layer thickness
o(t), apply the initial condition on ¢ and, therefore,
derive the result in Equation 15.

2. Solve Equation 9 for ¢(n). Apply the boundary
conditions on ¢ to derive the result in Equation 16.

3. We went through some discussion to establish that
the system can be considered semi-infinite; that is, x
ranges from 0 to oo in the model. Is this a necessary
condition for our mathematical technique to work?

Why?

4. -ks it necessary for the condition at t=0 in our
problem to merge with the condition as x— oo for
the similarity method to work? Can you think of a
typical physical situation (in heat or mass transfer)
where the two conditions may not merge?

HOMEWORK PROBLEMS

1. Using values of the error function given in tables by
Abramowitz and Stegun (1), prepare a plot of the
dimensionless temperature in the slab (from the left—
hand side of Equation 18) against the similarity
coordinate 7 in the range 0< # =2 (assume C =2).

2. In this problem, we shall model the steady heat
transfer to a fluid in laminar flow in a circular tube
in the thermal entrance region. This problem was
originally set up and solved by Leveque in 1928.
After making appropriate assumptions, the follow-
ing partial differential equation can be derived for
the temperature in the fluid.

oT : “0°T

e el H-1
ﬂyax aéyz (H-1)
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