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Preface

Interest in the geometric properties of Banach spaces is due, to a great
extent, to the fact that the linear topological properties, which are ex-
tremely useful in applications, are inseparably linked with a fixed geo-
metrical object, namely, the closed unit ball of the space [i.e., the set
Bl(O) = {x : [Ix|l = 1}]. Thus we are led naturally to consider linear top-
ological properties within the framework of a given norm on the space.

The purpose of this book is to present a comprehensive survey of those
properties of a Banach space related to strict convexity, together with
some applications.

The book contains three chapters. The first chapter is devoted to
some of the basic results of linear functional analysis; readers who have
had a one-year course in functional analysis may omit this chapter. Our
treatment of the subject of the book begins in Chap. 2. The class of
strictly convex spaces was first defined and investigated by J. Clarkson
and M. G. Krein. We present several characterizations of these spaces,
using real extreme points and certain classes of spaces related to the
Banach space, such as the ZP(X) spaces. An interesting and important
characterization of strictly convex spaces mentioned in the text is the
one involving duality mappings (introduced by A. Beurling and A. Living-
ston). This was studied by many mathematicians, among whom we mention
only a few: F. Browder, W. L. Bynum, and S. Gudder. Some relations be-
tween strict convexity (or some of its generalizations) and the extension
of continuous linear functionals are also mentioned. Further, the problem
of the strict convexity of subspaces, products, and quotient subspaces is
discussed.

Since in applications it is convenient to have some concrete classes
of Banach spaces which share the property of strict convexity, we present

some of these. Among the most important and interesting is the class of
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uniformly convex spaces, introduced by J. A. Clarkson in 1936 and since
then investigated and generalized in a great number of papers. Among the
contributors to the study of uniformly convex spaces and related classes
of Banach spaces we note V. Smulian, D. Milman, B. Pettis, R. C. James,
I. Glicksberg, J. Lindenstrauss, M. I. Kadets (M. I. Kadec), P. Enflo, V.
Klee, A. Lovaglia, E. Asplund, G. Nordlander, V. D. Milman, S. L. Troian-
sky, and V. Zizler.

Next we consider the modulus of convexity and the modulus of smooth-
ness of a Banach space and related classes of Banach spaces. Here the
basic results of J. Lindenstrauss, M. I. Kadets, and V. Milman are pre-
sented. We mention also a function, introduced by V. Milman, which facil-
itates the description of some classes of spaces, e.g., the uniformly con-
vex spaces and the uniformly nonsquare spaces of James. Further, we study
relations between the differentiability properties of the norm and some
geometric properties of the Banach space. The problem of deciding when a
Banach space has an equivalent norm with given properties is treated in the
last part of this chapter, for the properties of strict convexity and uni-
form convexity. Here we present the theorems of V. Klee on strict convex-
ity and the remarkable result of R. C. James and P. Enflo on uniformly
convex spaces.

The chapter continues with some applications. First we give applica-
tions to the theory of approximation (the proximity operator, or the Cheby-
shev operator) and further to fixed point theory. Here we note that the
first result in which uniform convexity plays a fundamental role was a
theorem of F. Browder that a nonexpansive mapping defined on a bounded,
closed, and convex subset in an uniformly convex space has a fixed point.
We present results related to this theorem as well as for a class of map-
pings called T-maps, which were first studied by the Italian mathematician
Francesco Tricomi. Also, the normal structure and geometric properties of
Banach spaces and fixed point theory are discussed. Special attention is
given to a new class of spaces, the so-called normed probabilistic metric
spaces introduced by A. éerstnev, which are a particular case of probabil-
istic metric spaces, introduced by K. Menger in 1942. A property is con-
sidered which seems to be a good candidate for strict convexity in this
setting.

In their interesting study of the space of all continuous (real-valued)
functions on a compact Hausdorff space, R. Arens and J. L. Kelley have de-

termined explicitly the form of extreme points of the closed unit ball of
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the conjugate space. It was shown that these coincide with the set of all
nontrivial multiplicative functionals. The case of linear operators be-
tween two spaces of continuous functions was first considered by C. I.
Tulcea and A. I. Tulcea. The problem has attracted the attention of many
people and further theorems were obtained by R. Blumenthal, F. Bonsall,

J. Lindenstrauss, R. Phelps, and M. Sharir. The second chapter ends by
presenting results related to those of Arens-Kelley and Tulcea.

One of the most important properties of the space of complex analytic
functions is the validity of the maximum principle for elements in the
space. It is quite natural to ask if this fundamental property holds for
Banach-valued analytic functions. A well-known example (mentioned, for
example, in the book of Hille et al.) shows that this is not the case for
all Banach spaces. In the third chapter we solve the problem of charac-
terizing those Banach spaces for which the maximum modulus holds for analy-
tic functions with values in the space. This is achieved by defining the
so-called complex extreme points. By the use of this class of points in
the unit ball of a Banach space we study the class of complex strictly
convex spaces (i.e., those spaces for which all elements of norm 1 are
complex extreme points). Further, we present some classes of spaces which
are, in some sense, analogous to some classes of Banach spaces considered
in Chap. 2.

Almost all the results we include have appeared in the literature.

We make no claim of encyclopedic coverage, for we have concentrated on
those aspects which seem to us most interesting and significant. Also,
we have attempted to provide the reader with a bibliography, which does
not pretend to be complete, but which, we hope, will serve as an adequate
guide to the history and the current status of the topics presented in
this book.

We wish to acknowledge with thanks conversations and correspondence
in functional analysis (geometric theory of Banach spaces) from which we
have benefited. Out appreciation goes also to the editors of the Marcel

Dekker, Inc. for their attention to this volume .

Vasile I. Istratescu
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1

Banach Spaces

1.1 LINEAR SPACES

A fundamental notion in linear and nonlinear analysis, that of linear space
over a field K (K is R or L, the set of all real numbers or the set of all

complex numbers, respectively) is considered in the following definition.

DEFINITION 1.1.1 The nonempty set V is a linear space over K if there
exist two functions defined on V x V and K x V, denoted by + and -, respec-
tively, which satisfy the following properties:
I. x+ (y+2) = (x+y)+ 2z (associativity)

2 X +y =y + x (commutativity)

3 There exists an element 0 (zero) of V such that x + 0 = x
4. 0+« x=0
5

6

7

a -+ (x+y) asx+a-y
a-+(b-x)=ab-x
(a+b) » x=a-+*x+b -+ x

8. 1+ - x=xX

for all x,y,z in V and a,b in K.

Sometimes a - x is denoted simply as ax, and we adopt this convention
in what follows. The function + is called addition and the function - is
said to be multiplication by scalars (of K).

We now give some examples of linear spaces.

EXAMPLE 1.1.2 We consider an arbitrary set S, with V the set of all func-
tions defined on S with values in K. If f,g are two elements of V, then

h =f + g is defined by
h(s) = £(s) + g(s)

for all s in S. For any a in K and f in V, the element af is the function

defined as follows:
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(af) (s) = af(s)

for all s in S. With the addition and multiplication by scalars defined

above it is clear that V is a linear space over K.

As a matter of terminology, we mention that a linear space is called

a real linear space if K = R and a complex space if K = (.

EXAMPLE 1.1.3 Let n be a finite integer or = and consider the set V of
all sequences of the form x = (xl,xz,...,xn) if n is finite and x = (xl,
XZ’X3"") otherwise. Here Xi are elements of K. We show that V can be
structured as a linear space over K. Indeed, if y = (yl,yz,...,yn) is

another element of V then we set as x + y the element

(x) + Yo X3 ¥ Yo Xz % Ygs aeny X+ ¥

and if a is an arbitrary element of K the element a - x is defined as

(axl,axz,axz,...,axn)

It is obvious that V with + and . defined as above is a linear space over

K. We can proceed in a similar way for .

REMARK 1.1.4 It is clear that Example 1.1.3 is a particular case of the

space considered in 1.1.2, namely, when the set S is countable.

EXAMPLE 1.1.5 Let X be a compact Hausdorff space and C(X) be the set of
all continuous complex-valued functions on X. With the natural functions
+ and -, C(X) is a complex linear space over L. If we consider only the
real-valued continuous functions, then it is clear that we get a real

linear space.

DEFINITION 1.1.6 If V is a linear space over K then a subset V1 of V is
said to be a linear subspace if V1 is a linear space with the functions +

and - defined exactly as in V.

EXAMPLE 1.1.7 If V is the linear space of Example 1.1.2 and o is a
fixed point of S then

VSO ={f: feyv, f(so) = 0}

is obviously a linear subspace of V.

This is valid also for the space of Example 1.1.5 as well as for the
space of Example 1.1.3. Other interesting examples of subspaces will be

given later.
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1.2 SETS IN LINEAR SPACES

In what follows we define various classes of subsets in linear spaces.
First we note that the family of linear subspaces of a linear space is an
important class of objects associated with the space. One of the most
important classes of subsets of a linear space is that consisting of the

so-called convex sets.

DEFINITION 1.2.1 Let V be a linear space over K. A subset C of V is

called convex if whenever x,y are in C, then for all t in (0,1) the element

z, = tx + (1 - t)y

is in €.
DEFINITION 1.2.2 If E is a subset of a linear space V then conv E, the
convex hull of E, is the smallest convex set containing E.

It is not difficult to see, using Zorn's lemma, that for each subset
E, conv E exists.

The following proposition gives another description of conv E.

PROPOSITION 1.2.3 If E is a subset of a linear space V then

n n

conv E = {z P g = Z a.x., a. = 0, Z a. = 1, x,. € E}
& 3 I 1 o 1 =5

i=1 i=1

Proof: Let us denote by E1 the set

f n n
Z: z = Z QX ; @ = 0; Z a. = 1, x. € E
[ jop i i jo1 & il

We remark that this set is convex. Indeed, if z., and z, are two elements

1 2
of El’

S T T 27T T T Py

then for all t in (0,1) the element tx + (1 - t)y is in El’ since we can
write
nmo
tx +(1 - t)y = .2 a;zg
i=1
with
ta. i=n
i

L
@ - t)bn+m—i
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%, i
Z. = L .
1 y 1>n

i-n

IA
=)

Thus the convexity of E1 is proved. To prove that E, is the smallest con-

1

vex set containing E, we must show that any convex set E containing E

2
contains El' For this it is sufficient to show that E2 contains all the

elements z of the form
Z = a,X, + *-+ + a x a: € [0,1], & a. =1, x. € E
171 n'n i b i
For n = 2 this is obvious. Suppose that the assertion is valid for n < k.

We prove it for k + 1.

Let us consider z = a ® e i
s cn e 1% taX t A X where a, are positive
numbers and Zi-l a, = 1 and x, are in E. We must show that this is in EZ'

We can write

ZEaXy o gt 1%+
k a; \
T ANt - ak+1)[.Z e %
i=1 k+1
— _ 1
= ak+1Xk+1 + (1 ak+1)z

where z' is in E2 by induction. This implies clearly that z is in E2.
Thus we get that E1 is the smallest convex set containing E, and the
proposition is proved.
We give now examples of convex sets.
EXAMPLE 1.2.4 Let V be the linear space of Example 1.1.2. Then
C={f: fev, f(s) € (0,1), s € S}

is obviously a convex set.

EXAMPLE 1.2.5 Let X be a compact Hausdorff space and C(X) be the space

of all complex-valued continuous functions on X. The set C defined by

{f : £feCX), sup|f(s)| = 1}
s€X

is clearly a convex set.
We consider now other classes of sets in linear spaces.

DEFINITION 1.2.5 Let V be a linear space over K and E be a subset of V.
Then E is called
1. Symmetric if E = -E = {-x : x € E}
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2. Absorbing if for each x in V there exists tX > 0 such that for
all |t] = t > tx €E
3. Balanced if tE = {tx : x ¢ E, [t] =1} ¢ E}
4. Affine if tE = (1 - t)E = {tx + (1 - t)y : X,y €E, t € [0,1] c_ E}
5. A line through x and y if E = {tx + (1 -1ty :teR}
6. The segment joining x and yif E = {tx+ (1 - t)y : t ¢ [0,1]}

We now give examples of sets having some properties stated in Defini-
tion 1.2.6.

EXAMPLE 1.2.7 Let us consider V as R2 = {(xl,xz) : xi € R} (R the set of

all real numbers) and E as the following set:

_ . 2 2 _ s
E = {(xl,xz) : Xl + X, = 1}

It is easy to see that this set is symmetric and absorbing. Obviously E

is not convex.

EXAMPLE 1.2.9 Let V be the space in Example 1.2.5 and E be the set de-

fined as follows:
E={f: fe€evV, fis real valued}

Then clearly E is convex and balanced.

1.3 SEMINORMS AND NORMS ON LINEAR SPACES. LOCALLY CONVEX SPACES

Let V be a linear space over K. An important class of functions on V is

considered in the following definition.
DEFINITION 1.3.1 The function
p:V-~>R
is called a seminorm if the following properties hold:

p(x +y) = p(x) + ply)
p(ax) = |a|p(x)

for all x,y in V and all a in K. The seminorm is said to be norm if

p(x) = 0 if and only if x = 0.

. ; . +
We remark that the values of a seminorm are in fact inRR . Indeed,

if we take x = -y then we get
P(0) = 0=p(x) + p(-x) = 2p(x)

and the assertion is proved.



6 Chap. 1. Banach Spaces
Some examples of seminorms follow.

EXAMPLE 1.3.2 If V is the linear space of Example 1.1.2 and S is an

arbitrary but fixed point of S, the function

Py () = |£(sy) |

is obviously a seminorm on V.

EXAMPLE 1.3.3 If C(X) is the space in Example 1.1.5 then the function

f > p(£) = sup|f(s)|
s€eX

is a norm on C(X).
As is now standard, we use the following notation for a norm:
p(x) = [l

and different norms will be denoted by H-Hl, ”'HZ’ H‘Hs, cee

If V is a linear space over K and p is a seminorm then the set

Bp(O,l) = {x: p(x) <1}

is clearly convex, symmetric, balanced, and absorbing. The following
proposition gives the connection between convex sets which are balanced
and absorbing and the seminorms. This connection is expressed using the

so-called gauge or Minkowski functional.

PROPOSITION 1.3.4 Let V be a linear space over K and E be a subset in V
with the following properties:

a. E is convex.

b. E is balanced and absorbing.

Then the function Pk defined on V by the formula
pE(x) = inf{t > 0 : x € tE}

has the following properties:

08 pE(x) = 0.

2. pplx+y) =pg(x) + pp ().

3. pE(ax) = lalpE(x).

4. {x @ pg(x) < 1} ¢ E € {x = pE(x) < 1}.

proof: Properties 1 and 3 are obvious. To prove 2, let € > 0, then

x € [py(x) + e]E
y € [pg(y) + €]E
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and thus
X +y € [p(x) + Pp(¥) + 2e]E

which follows from the convexity of E. Since e is arbitrary we get that
2 holds. The last relations between the sets follow from the definition

of Pg-

To define the very important notion of locally convex space, first we

recall the notion of topological space.

DEFINITION 1.3.5 If S is an arbitrary nonempty set, then a topology on S

is any collection t of subsets of S satisfying the following properties:

1. S €1, g €1 (the empty set is denoted by g).

2. The union of an arbitrary family of elements of t is in T

3 If Gl’ ey, Gm are in t (m is finite), then G1 N G2 n---nNn Gm is in 7.
The pair (S,t) is called a topological space. For short we say that

S itself is a topological space.

DEFINITION 1.3.6 If s ¢ S, then a neighborhood of s is any subset in S

containing a set V in t such that s € V.

DEFINITION 1.3.7 If Sl and 82 are two topological spaces and f : S1 o 82
is a mapping defined on S1 with values in SZ’ then w; say that f is contin-
uous at the point S of S1 if for any neighborhood V° of f(xl) there exists
a neighborhood V1 of S such that f(s) ¢ V2 if s € Vl. The function f is

said to be continuous on S1 if it is continuous at each point of Sl'

The notion of topological linear space is considered in the following

definition.

DEFINITION 1.3.8 A linear space V over K is said to be a topological
linear space if on V there exists a topology such that V x V and K x V
with the product topology have the property that + and - are continuous

functions.

In this case t is called a linear topology on V. For a detailed
account of linear topological space theory we refer to the excellent texts
of N. Bourbaki (1955) and A. Grothendieck (1954).

The subclass of locally convex spaces is considered in the following

definition.

DEFINITION 1.3.9 A linear topology on a linear topological space V is

said to be a locally convex topology if every neighborhood of 0 (the zero
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of V) includes a convex neighborhood of 0.
Then we have the following result.

PROPOSITION 1.3.10 If V is a locally convex space over K then the topol-

ogy of V is determined by a family of seminorms (pi)iEI'

For the proof of this assertion see the above-mentioned references.

1.4 BANACH SPACES. EXAMPLES

An important class of locally convex spaces is the class of Banach spaces,
in which the family of seminorms reduces to a single norm having a special
property considered below.

If

x = x|l

is a norm on the linear space V then the function on V x V defined by the

relation

(x,y) > llx - yll = d(x,y)

defines a metric on V, i.e., d satisfies the following properties:
1. d(x,y) = 0, and d(x,y) = 0 if and only if x = y
2. d(x,y) = d(x,z) + d(y,z)
3. dx,y) = d(y,x)

for all x,y,z in V.

1l

Since the proof that d has the above properties is very simple we

omit it.

DEFINITION 1.4.1 If (xn) is a sequence of elements of V then we say that

it converges to x € V if lim Hxn - x| = 0.
The notion of Cauchy sequence is defined as follows.

DEFINITION 1.4.2 A sequence (yn) of elements of V is called a Cauchy
sequence if for any e > 0 there exists an integer Ne such that for all

n,m = Ne’
Hxn - me £e

Now the notion of Banach space is considered in the following

definition.



1.4 Banach Spaces. Examples 9

DEFINITION 1.4.3 A linear space over K is called a Banach space if on V

there exists a norm
x > [Ix]|

such that every Cauchy sequence of elements of V is a convergent sequence.
(In other words, using the terminology of metric spaces, V with the metric

d defined as above is a complete metric space.)

We give now some examples of Banach spaces. First, a linear space on
which there exists a norm is called a normed space, and we have real normed
spaces and complex normed spaces, respectively, according as the field K
is R or L. Also, a Banach space is a real Banach space if the field if

K =R and a complex Banach space if K = .

EXAMPLE 1.4.5 Suppose X = [0,1] and consider the following function de-

fined on C(X), the space of all continuous K-valued functions on X:
i |
f»J [£(s)| ds
0

which is obviously a norm on C(X). In this case C(X) is a normed linear

space.

EXAMPLE 1.4.6 Let us consider P € (1,) and let 2P be the set of all

sequences x = (xi), X, € K, with the property that

< o

o l/p
ol = (3 fxg 1P)
Pl
Then, using Minkowski's inequality, we get that this is a norm on 2P,
(For the structure of #P as a linear space see Example 1.1.2.) Also, it
is not very difficult to prove that in fact 2P with the above norm is a

Banach space.

EXAMPLE 1.4.7 Let us denote by £ the set of all bounded sequences x =
(xi), xi € K. With the norm

x> I, = sup; x|

o

¢ 1is a Banach space.

oo

[e=]
We note now some very interesting and important subspaces of £ (4

is denoted sometimes by m).



