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Preface

The mathematical treatment of random geometric structures can be traced
back to the 18th century (the Buffon needle problem). Subsequent considera-
tions led to the two disciplines Integral Geometry and Geometric Probability,
which are connected with the names of Crofton, Herglotz, Blaschke (to men-
tion only a few) and culminated in the book of Santalé (Integral Geometry
and Geometric Probability, 1976). Around this time (the early seventies), the
necessity grew to have new and more flexible models for the description of
random patterns in Biology, Medicine and Image Analysis. A theory of Ran-
dom Sets was developed independently by D.G. Kendall and Matheron. In
connection with Integral Geometry and the already existing theory of Point
Processes the new field Stochastic Geometry was born. Its rapid development
was influenced by applications in Spatial Statistics and Stereology. Whereas at
the beginning emphasis was laid on models based on stationary and isotropic
Poisson processes, the recent years showed results of increasing generality, for
nonisotropic or even inhomogeneous structures and without the strong inde-
pendence properties of the Poisson distribution. On the one side, these recent
developments in Stochastic Geometry went hand-in-hand with a fresh inter-
est in Integral Geometry, namely local formulae for curvature measures (in
the spirit of Federer’s Geometric Measure Theory). On the other side, new
models of point processes (Gibbs processes, Strauss processes, hardcore and
cluster processes) and their effective simulation (Markov Chain Monte Carlo,
perfect simulation) tightened the close relation between Stochastic Geometry
and Spatial Statistics. A further, very interesting direction is the investigation
of spatial-temporal processes (tumor growth, communication networks, crys-
tallization processes). The demand for random geometric models is steadily
growing in almost all natural sciences or technical fields.

The intention of the Summer School was to present an up-to-date descrip-
tion of important parts of Stochastic Geometry. The course took place in
Martina Franca from Monday, September 13, to Friday, September 18, 2004.
It was attended by 49 participants (including the lecturers). The main lec-
turers were Adrian Baddeley (University of Western Australia, Perth), Imre
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Barany (University College, London, and Hungarian Academy of Sciences,
Budapest), Rolf Schneider (University of Freiburg, Germany) and Wolfgang
WEeil (University of Karlsruhe, Germany). Each of them gave four lectures of
90 minutes which we shortly describe, in the following.

Adrian Baddeley spoke on Spatial Point Processes and their Ap-
plications. He started with an introduction to point processes and marked
point processes in R? as models for spatial data and described the basic no-
tions (counting measures, intensity, finite-dimensional distributions, capacity
functional). He explained the construction of the basic model in spatial sta-
tistics, the Poisson process (on general locally compact spaces), and its trans-
formations (thinning and clustering). He then discussed higher order moment
measures and related concepts (K function, pair correlation function). In his
third lecture, he discussed conditioning of point processes (conditional inten-
sity, Palm distributions) and the important Campbell-Mecke theorem. The
Palm distributions lead to G and J functions which are of simple form for
Poisson processes. In the last lecture he considered point processes in bounded
regions and described methods to fit corresponding models to given data. He
illustrated his lectures by computer simulations.

Imre Barany spoke on Random Points, Convex Bodies, and Approx-
imation. He considered the asymptotic behavior of functionals like volume,
number of vertices, number of facets, etc. of random convex polytopes arising
as convex hulls of n i.i.d. random points in a convex body K C R?. Starting
with a short historical introduction (Efron’s identity, formulas of Rényi and
Sulanke), he emphasized the different limit behavior of expected functionals
for smooth bodies K on one side and for polytopes K on the other side. In
order to explain this difference, he showed that the asymptotic behavior of the
expected missed volume FE(K,n) of the random convex hull behaves asymp-
totically like the volume of a deterministic set, namely the shell between K
and the cap body of K (the floating body). This result uses Macbeath regions
and the ‘economic cap covering theorem’ as main tools. The results were ex-
tended to the expected number of vertices and of facets. In the third lecture,
random approximation (approximation of K by the convex hull of random
points) was compared with best approximation (approximation from inside
w.r.t. minimal missed volume). It was shown that random approximation is
almost as good as best approximation. A further comparison concerned con-
vex hulls of lattice points in K. In the last lecture, for a convex body K C R?,
the probability p(n, K') that n random points in K are in convex position was
considered and the asymptotic behavior (as n — o0) was given (extension of
the classical Sylvester problem).

The lectures of Rolf Schneider concentrated on Integral Geometric
Tools for Stochastic Geometry. In the first lecture, the classical results
from integral geometry, the principal kinematic formulas and the Crofton for-
mulas were given in their general form, for intrinsic volumes of convex bodies
(which were introduced by means of the Steiner formula). Then, Hadwiger’s
characterization theorem for additive functionals was explained and used to
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generalize the integral formulas. In the second lecture, local versions of the
integral formulas for support measures (curvature measures) and extensions
to sets in the convex ring were discussed. This included a local Steiner formula
for convex bodies. Extensions to arbitrary closed sets were mentioned. The
third lecture presented translative integral formulas, in local and global ver-
sions, and their iterations. The occurring mixed measures and functionals were
discussed in more detail and connections to support functions and mixed vol-
umes were outlined. The last lecture studied general notions of k-dimensional
area and general Crofton formulas. Relations between hyperplane measures
and generalized zonoids were given. It was shown how such relations can be
used in stochastic geometry, for example, to give estimates for the intersection
intensity of a general (non-stationary) Poisson hyperplane process in R<.

Wolfgang Weil, in his lectures on Random Sets (in Particular Boolean
Models), built upon the previous lectures of A. Baddeley and R. Schneider.
He first gave an introduction to random closed sets and particle processes
(point processes of compact sets, marked point processes) and introduced the
basic model in stochastic geometry. the Boolean model (the union set of a Pois-
son particle process). He described the decomposition of the intensity measure
of a stationary particle process and used this to introduce the two quantities
which characterize a Boolean model (intensity and grain distribution). He
also explained the role of the capacity functional (Choquet’s theorem) and
its explicit form for Boolean models which shows the relation to Steiner’s
formula. In the second lecture, mean value formulas for additive functionals
were discussed. They lead to the notion of density (quermass density, den-
sity of area measure. etc.) which was studied then for general random closed
sets and particle processes. The principal kinematic and translative formulas
were used to obtain explicit formulas for quermass densities of stationary and
isotropic Boolean models as well as for non-isotropic Boolean models (with
convex or polyconvex grains) in R?. Statistical consequences were discussed
for d = 2 and d = 3 and ergodic properties were shortly mentioned. The third
lecture was concerned with extensions in various directions: densities for direc-
tional data and their relation to associated convex bodies (with an application
to the mean visible volume of a Boolean model), interpretation of densities
as Radon-Nikodym derivatives of associated random measures, density for-
mulas for non-stationary Boolean models. In the final lecture, random closed
sets and Boolean models were investigated from outside by means of contact
distributions. Recent extensions of this concept were discussed (generalized
directed contact distributions) and it was explained that in some cases they
suffice to determine the grain distribution of a Boolean model completely. The
role of convexity for explicit formulas of contact distributions was discussed
and, as the final result, it was explained that the polynomial behavior of the
logarithmic linear contact distribution of a stationary and isotropic Boolean
model characterizes convexity of the grains.

Since the four lecture series could only cover some parts of stochastic
geometry, two additional lectures of 90 minutes were included in the program,
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given by D. Hug and V. Capasso. Daniel Hug (University of Freiburg) spoke
on Random Mosaics as special particle processes. He presented formulas for
the different intensities (number and content of faces) for general mosaics and
for Voronoi mosaics and then explained a recent solution to Kendall’s con-
jecture concerning the asymptotic shape of large cells in a Poisson Voronoi
mosaic. Vincenzo Capasso (University of Milano) spoke on Crystallization
Processes as spatio-temporal extensions of point processes and Boolean mod-
els and emphasized some problems arising from applications.

The participants presented themselves in some short contributions, at one
afternoon, as well as in two evening sessions.

The attendance of the lectures was extraordinarily good. Most of the par-
ticipants had already some background in spatial statistics or stochastic geom-
etry. Nevertheless, the lectures presented during the week provided the audience
with a lot of new material for subsequent studies. These lecture notes contain
(partially extended) versions of the four main courses (and the two additional
lectures) and are also intended as an information of a wider readership about
this important field. I thank all the authors for their careful preparation of
the manuscripts.

I also take the opportunity, on behalf of all participants, to thank C.I.M.E.
for the effective organization of this summer school; in particular, I want to
thank Vincenzo Capasso who initiated the idea of a workshop on stochastic
geometry. Finally, we were all quite grateful for the kind hospitality of the
city of Martina Franca.

Karlsruhe, August 2005 Wolfgang Weil
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Spatial Point Processes and their Applications

Adrian Baddeley

School of Mathematics & Statistics, University of Western Australia
Nedlands WA 6009, Australia
e-mail: adrian@maths.vwa. edu. au

A spatial point process is a random pattern of points in d-dimensional space
(where usually d = 2 or d = 3 in applications). Spatial point processes are
useful as statistical models in the analysis of observed patterns of points,
where the points represent the locations of some object of study (e..g. trees
in a forest, bird nests, disease cases, or petty crimes). Point processes play a
special role in stochastic geometry, as the building blocks of more complicated
random set models (such as the Boolean model), and as instructive simple
examples of random sets.

These lectures introduce basic concepts of spatial point processes, with a
view toward applications, and with a minimum of technical detail. They cover
methods for constructing, manipulating and analysing spatial point processes,
and for analysing spatial point pattern data. Each lecture ends with a set of
practical computer exercises, which the reader can carry out by downloading
a free software package.

Lecture 1 (‘Point Processes’) gives some motivation, defines point processes,
explains how to construct point processes, and gives some important exam-
ples. Lecture 2 (‘Moments’) discusses means and higher moments for point
processes, especially the intensity measure and the second moment measure,
along with derived quantities such as the K-function and the pair correlation
function. It covers the important Campbell formula for expectations. Lec-
ture 3 (‘Conditioning’) explains how to condition on the event that the point
process has a point at a specified location. This leads to the concept of the
Palm distribution, and the related Campbell-Mecke formula. A dual concept is
the conditional intensity, which provides many new results. Lecture 4 (‘Mod-
elling and Statistical Inference’) covers the formulation of statistical models
for point patterns, model-fitting methods, and statistical inference.
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1 Point Processes

In this first lecture, we motivate and define point processes, construct exam-
ples (especially the Poisson process [28]), and analyse important properties
of the Poisson process. There are different ways to mathematically construct
and characterise a point process (using finite-dimensional distributions, va-
cancy probabilities, capacity functional, or generating function). An easier
way to construct a point process is by transforming an existing point process
(by thinning, superposition, or clustering) [43]. Finally we show how to use
existing software to generate simulated realisations of many spatial point
processes using these techniques, and analyse them using vacancy probabilities
(or ‘empty space functions’).

1.1 Point Processes in 1D and 2D

A point process in one dimension (‘time’) is a useful model for the sequence
of random times when a particular event occurs. For example, the random
times when a hospital receives emergency calls may be modelled as a point
process. Each emergency call happens at an instant, or point, of time. There
will be a random number of such calls in any period of time, and they will
occur at random instants of time.

L *—@ @

Fig. 1. A point process in time.

A spatial point process is a useful model for a random pattern of points
in d-dimensional space, where d > 2. For example, if we make a map of the
locations of all the people who called the emergency service during a particular
day, this map constitutes a random pattern of points in two dimensions. There
will be a random number of such points, and their locations are also random.

Fig. 2. A point process in two dimensions.
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We may also record both the locations and the times of the emergency calls.
This may be regarded as a point process in three dimensions (space x time),
or alternatively, as a point process in two dimensions where each point (caller
location) is labelled or marked by a number (the time of the call).

Spatial point processes can be used directly, to model and analyse data
which take the form of a point pattern, such as maps of the locations of trees
or bird nests (‘statistical ecology’ [16, 29]); the positions of stars and galax-
ies (‘astrostatistics’ [1]); the locations of point-like defects in a silicon crystal
wafer (materials science [34]); the locations of neurons in brain tissue; or the
home addresses of individuals diagnosed with a rare disease (‘spatial epidemi-
ology’ [19]). Spatial point processes also serve as a basic model in random
set theory [42] and image analysis [41]. For general surveys of applications of
spatial point processes, see [16, 42, 43]. For general theory see [15].

1.2 Formulation of Point Processes

There are some differences between the theory of one-dimensional and higher-
dimensional point processes, because one-dimensional time has a natural or-
dering which is absent in higher dimensions.

A one-dimensional point process can be handled mathematically in many
different ways. We may study the arrival times 7 < T, < ... where T, is
the time at which the ith point (emergency call) arrives. Using these random
variables is the most direct way to handle the point pattern, but their use is
complicated by the fact that they are strongly dependent, since T, < T;,.

° e o o
T, T, T, T,

Fig. 3. Arrival times 7).

Alternatively we may study the inter-arrival times S; = T, —T,. These have
the advantage that, for some special models (Poisson and renewal processes),
the random variables Sy, S5, ... are independent.

Y Ny

Fig. 4. Inter-arrival times 5,.

Alternatively it is common (especially in connection with martingale theory)
to formulate a point process in terms of the cumulative counting process
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N; = number of points arriving up to time ¢
oo

d 1T <t}

i=1

for all t > 0, where 1{...} denotes the indicator function, equal to 1 if the
statement “...” is true, and equal to 0 otherwise. This device has the advan-
tage of converting the process to a random function of continuous time ¢, but
has the disadvantage that the values N; for different ¢ are highly dependent.

N(t)

=
t

Fig. 5. The counting process N, associated with a point process.

Alternatively one may use the interval counts
N(a,b] = Ny — N,

for 0 < a < b which count the number of points arriving in the interval (a, b].
For some special processes (Poisson and independent-increments processes)
the interval counts for disjoint intervals are stochastically independent.

[ ]
[ ]
®
®

1
—

a

o~

N(a,b] =2

Fig. 6. Interval count N(a,b] for a point process.

In higher dimensions, there is no natural ordering of the points, so that there is
no natural analogue of the inter-arrival times S; nor of the counting process N;.
Instead, the most useful way to handle a spatial point process is to generalise
the interval counts N(a,b] to the region counts
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N(B) = number of points falling in B

defined for each bounded closed set B C RY.

N(B) =3

Fig. 7. Counting variables N(B) for a spatial point process.

Rather surprisingly, it is often sufficient to study a point process using only
the vacancy indicators

V(B) = 1{N(B) = 0}

= 1{there are no points falling in B}.

V(B)=1

Fig. 8. Vacancy indicators V(B) for a spatial point process.

The counting variables N(B) are natural for exploring additive properties of a
point process. For example, suppose we have two point processes, of ‘red” and
‘blue’ points respectively, and we superimpose them (forming a single point
process by discarding the colours). If Nyeq(B) and Ny, (B) are the counting
variables for red and blue points respectively, then the counting variable for
the superimposed process is N(B) = Nyeq(B) + Nplue(B).

The vacancy indicators V (B) are natural for exploring geometric and ‘mul-
tiplicative’ properties of a point process. If Vieq(B) and Vi,..(B) are the va-
cancy indicators for two point processes, then the vacancy indicator for the
superimposed process is V(B) = Vieq(B) Viue(B).
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1.3 Example: Binomial Process

To take a very simple example, let us place a fixed number n of points at
random locations inside a bounded region W C R2. Let X,...... X, be ii.d.
(independent and identically distributed) random points which are uniformly
distributed in W. Hence the probability density of each X is
L/ AW)ifreW
@ ={y/

0 otherwise

where Ao (W) denotes the area of W. A realisation of this process is shown in

Figure 9.
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Fig. 9. Realisation of a binomial point process with n = 100 in the unit square.

Since each random point X, is uniformly distributed in W, we have for any
bounded set B in R?

P(X, € B)= [ f(z)dx
JB

~ M(BOW)
(W)

The variables N(B) and V(B) may be represented explicitly as

n

N(B) =Y 1{X, € B}

1=1

V(B) = nfnl) 1{X, ¢ B}

~—



